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ABSTRACT:  Dams are infrastructural systems critical for hydropower generation, flood control and river 

navigation. They are systems branded by their multifarious, dynamic, and stochastic behaviors. The recurrent 

variation in the hydrological and meteorological variables poses a higher probability of dam failure, highlighting the 

need to improve pertinent risk valuation approaches to forecast failure risks, bearing in mind the uncertain states of 

such variables. This study Develops stochastic models for reservoir system state. It relates system storage, 

dependability, and yield to the incidence, scale, and period of reservoir system let-downs and similarly to associate 

unchanging -state reliability 1-q, to the N-year no-failure system reliability p. A two – state Markov process was 

employed in the development of the stochastic reservoir models. Two states of the reservoir system were defined, the 

states are failure state and non-failure. Specifying entirely the dualistic Markov equation, an estimation of (r) and (f) 

were done. The relationship between the resilience index and the probability that a regular year follows a failure year 

(r) and the likelihood that a failure year follows a regular year f were established using linear regression models. 

Correlation coefficients R2 and standard error estimates were used to determine the extent of correlation and linearity 

of the models. Furthermore, the general regression models for establishing relationship between the reservoir system 

states i.e., failure state and non-failure state were developed. The value of Annual reliability (Ra) obtained depicts 

that the reservoir is substantially reliable at 0.96 reliability; also the unconditional return period of failure years 

(72years) substantiates the reliability of the reservoir. Again, the r, f and Average length of reservoir failure (UL) 

values obtained indicates strong reliability of Kainji reservoir. From the analysis of the reservoir system state the 

probability of failure years following a regular year was determined to be 0.014 which implies low probability of 

occurrence of system state f, the probability of regular year following a failure year was estimated as 0.99. The annual 

reliability Ra was estimated as 0.96, this indicated that the reservoir is significantly reliable. This can be seen from 

the estimate of the unconditional return period of failure years (72 years) and the average length of return period of 

1 year. From the parameter values computed for the reservoir system state it is clear that the reservoir system is 

significantly reliable. In conclusion stochastic models were developed for the reservoir system state, and used to 

evaluate the state of the reservoir.  
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INTRODUCTION  

The state of the art for optimal water reservoir operations is rapidly evolving, driven by emerging 

societal challenges. Changing values for balancing environmental resources, multisectoral human 

system pressures, and more frequent climate extremes are increasing the complexity of operational 

decision making Giuliani, (2021) 

Water balance dynamics of the reservoir are piece-wise deterministic and are driven by a stochastic 

regime-switching inflow process (Hidekazu and Yumi 2020).  Water resource systems have helped 

together people and their economy for many eras. The services provided by such systems are in 

manifold. Yet in numerous areas, water resource systems are not capable to meet the requirements, 

or even the basic desires, for unsoiled fresh water, nor can they support and uphold robust bio 

diverse ecosystems (Daniel, et al., 2005). Inadequate water resource systems reflect let-downs in 

planning, management and decision making, and at stages wider than water. 

Operations of reservoirs are increasingly noteworthy in the water cycle (Hanasaki et al., 2006; 

Padowski et al., 2015; Wada et al., 2017) and support regional growth and development by 

increasing water accessibility for various economic subdivisions, contributing renewable 

electricity production, and mitigating flood risks (Billington & Jackson, 2017). Current estimates 

(Grill et al., 2019) submit that current dams control around 50% of the all rivers worldwide. This 

figure is predictable to grow speedily following the generated new interest in dam construction 

(World Bank, 2009), which poses the challenge of designing their upcoming operations (e.g., 

Bertoni et al., 2019; Geressu & Harou, 2015; Mortazavi-Naeini et al., 2014) to safeguard water 

and energy supplies in rapid developing African and Asian countries (Zarfl et al., 2015). Rapid 

changes in climate and society suggest an urgent need to re-operate existing infrastructures 

(Benson, 2016), particularly in systems that are failing to produce the likely benefits that inspired 

their construction (Ansar et al., 2014; Sovacool et al., 2014). 

Among the processes used in planning and in managing of reservoirs include; time and volume 

reliabilities. By definition time period reliability shows the proportion of time during an operating 

horizon for which the reservoir can meet the specified demands while volume reliability is that 

volume of water given as a section of the total target demand during the operating horizon.  

 

The reservoir evaluation is conventionally done applying procedures which comprise time based 

reliability of hundred percent. Nevertheless, to design a reservoir system that are massive amenities 

at hundred percent dependability may not be economical. Furthermore, sometimes in operating 
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reservoirs, due to unforeseen forms or nature of demand or drought, all the targeted demands 

cannot be provided. Occurrences of these nature are referred to as failure times or period. 

Henceforward as reported in Lele (1987), Loucks (1998) and Adeloye (1997), recognition of 

failure period as a reality in designing stage of reservoirs is necessary and the involvement of 

performance indices such as reliability and vulnerability to control the performance of reservoirs 

during this period is desirable.   

Reliability represents the time based probability in which reservoir can provide all the design 

demand which vulnerability exhibits the severity of failure (Hashimoto; 1982; Adeloye, 2001). 

For instance, reliability of 98% indicates the reservoir is able to provide all the design demand in 

98% of the operational period and the vulnerability of 30% indicates the reservoir may not be able 

to provide 30% of the target demand during the failure period and it is necessary to find an 

alternative water resource during this period.     

 

In broad, there are two methodologies to the determination of the yield or storage capacity of a 

reservoir system. One method applied in the USA, which involves the determination of the no-

failure yield (often called the firm yield) which can be met over a particular planning period with 

a specified reliability. The other approach applied in Australia and somewhere else is to determine 

the yield which can be delivered with a specified steady-state reliability (1 - q). Regrettably, these 

two approaches are often seen as unrelated and disconnected. Both of these schools of thought can 

be connected using a two-state Markov model, resulting to completely consistent estimates of the 

reliability of reservoir systems, notwithstanding which school of thought one happens to follow. 

According to Vogel et al., (1996), when the sequent peak algorithm is used to determine the 

smallest reservoir system design capacity (S) required to guarantee regular or failure-free operation 

over an n-year planning period with probability p, then p is a probability over that planning period. 

If one applies the two state Markov model, the probability of consistent (failure-free) operation 

over an n-year period, p, is basically the probability of normal operations in the first year (1 — q), 

times the probability that successive years continues free of failures:     

                                     𝑝 = (1 − 𝑞)(1 − 𝑓)𝑛−1                                                   (1.0) 

The equation above relays the index of reliability usually applied in the USA (the probability p of 

failure-free operations over an n-year period) to the index of reliability frequently applied in 

Australia and somewhere else (the steady-state system reliability (1 — q). Furthermore, one can 

use the two-state Markov model to compare S-R-Y relationships developed using completely 

different understandings of system reliability Richard (1996). 
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A Markov chain (MC) is a stochastic method that defines a sequence of recurring or acyclic 

changes between the states of a given process (or variable) over discrete or unceasing time 

intervals. (Ahmad et al., 2021). 

Reservoir State Modelling  

Mosaad (2018), developed a simulation model that was applied to the Ruhr river reservoirs system 

in Germany. An adaptive neuro-fuzzy inference system, Thomas–Fiering model and hidden 

Markov model were incorporated in a simulation model. The set of model input included the time 

of the year, reservoir storage, inflow and Standardized Rainfall Index; and the target output was 

the reservoir release. Their results revealed that the proposed approach could be a good tool at the 

real-time operation stage to quickly check operational alternatives due to emergency events or 

planning and real-time incongruence.  

A two-state Markov model relates system storage, reliability, and yield to the frequency, 

magnitude, and duration of reservoir system failures (Vogel et al., 1994). In addition, the two-state 

Markov model allows relate steady-state reliability 1-q, to the N-year no-failure system reliability 

p. Additional advantage of the two-state Markov model is its easiness and therefore its simplicity 

of manipulation. Vogel et al., (1994), reported that Klemes, (1967); Stedinger et.al., (1983); and 

Vogel (1987) have effectively exploited two-state Markov model for representing sequences of 

reservoir surplus and failures. Nevertheless, those studies have not given direct link between the 

two-state Markov model and a simple reservoir system model. 

 

McMahon and Vogel (1996), reported that Klemes (1977), showed that the number of discrete 

storage states necessary to assess the reliability of a storage reservoir with a desired level of 

accuracy is customarily well above two states (McMahon and Vogel, 1996). It is usually infeasible 

for an over-year reservoir system to pass from full (state 1) to empty (state 2) in one year, as a 

result most investigators have applied more than two states to model reservoir state transitions. 

Conversely, if one describes one state as the failure state and another as the non-failure state, 

according to Vogel and Bolognese (1995) a two-state Markov model of reservoir state transitions 

gives a satisfactory description of the frequency and magnitude of reservoir system failure 

durations. Figure 1.1 illustrates the two basic reservoir transition states. 
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  Fig. 1.1: Reservoir system state for two State Markov Model (Vogel, 1994) 

 

 The failure of reservoir system is the inability of a reservoir system to deliver the contracted 

demand in a given year (Vogel, 1994.). Failures of water supply for within – year systems tend to 

be short- lived, in comparison with over- year systems, since within – year systems tend to refill 

on an annual basis. Naturally, all reservoir systems exhibit some combination of over- year and 

within – year behaviour (Vogel, 1996).   

A failure state happens when the water in storage plus the inflow during year t are less than the 

contracted demand 𝛼𝜇, where 𝛼 is demand and 𝜇 mean inflow. Vogel (1996), assumed that the 

states associated with  

                Yt,t = 1, ..., N                                                                                         (1.3) 

form a Markov chain with probability transition matrix: 

        A = [
1 − 𝑟 𝑟

𝑓 1 − 𝑓
]                                                                                (1.4) 

where f = probability that a failure year follows a regular year, and r = the probability that a regular 

year follows a failure year. The probabilities of the states of the Markov chain are given by: 

               𝑌𝑡+1 =  𝑌𝑡𝐴                                                                                  (1.5) 

As t increases, Yt reaches a steady-state and the solution to equation (1.7) becomes                                                                             
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lim

𝑡→∞

𝑌𝑡 [
𝑓 𝑟

𝑟 + 𝑓′ 𝑟 + 𝑓
]                                                           (1.6) 

Thus, the steady-state probability that the reservoir will be in the failure or regular states are f/(r + 

f) and r/(r + f) regardless of the initial state of the reservoir system (Vogel et al.,1995). The steady 

state system reliability (1 - q) can be related to the two-state Markov model using  

                            𝑞 = 1 −  
𝑟

𝑟+𝑓
                                                                             (1.7) 

Equation (1.7) provides the link between the two-state Markov model and S-R-Y relationships 

based upon a steady-state probability of failure.  

To specify fully the two-State Markov model, one requires an estimate of r and f in equation (1.7). 

Estimation of the transition probability r is accomplished by first recalling its definition as the 

probability that the reservoir system transfers from the failure (empty) state to the normal (non-

empty) state. The failure state is defined as the condition when the water in storage plus the inflow 

for that period Qt are less than the demand (𝛼𝜇). Once a failure has occurred, r becomes the 

conditional probability:                 

                         𝑟 = 𝑃{ 𝑄𝑡+1  ≥  𝛼𝜇|𝑄𝑡 <  𝛼𝜇|}                                                  (1.8) 

which can be approximated, as shown by Vogel & Bolognese (1995), to be:    

                          𝑟 = 𝜙 [

𝑚−𝜌(2𝜋)−1/2

𝜙(−𝑚)exp (
𝑚2

2
)

√1−𝜌2
]                                                                      (1.9) 

when Q follows an AR(1) normal process with 𝜙  denoting the cdf of a standard normal random 

variable. Note that equation (1.9) reduces to  

                           r = ϕ (m)                                                                                       (2.0) 

when 𝜌 = 0. Once r is determined from equation (1.9), f is easily found by rearranging equation 

(1.9) to obtain:  

                        𝑓 = 𝑟 [
𝑞

1−𝑞
]                                                                                       (2.1)  

 

 

 

       f 
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Fig. 1.2:  Two- state Markov model of reservoir system states (Vogel et al., 1987) 

 

Vogel et al., (1987) in his work established that the probability function for the length of a reservoir 

system failure for a two-state Markov model is given by: 

                     𝑃 {𝐿 =  ℓ} = 𝑟 (1 − 𝑟)ℓ−1  for ℓ≥ 1                                         (2.2) 

where L is the length of a failure sequence. Since L is geometrically distributed, it has mean E[L] 

= 1/r, variance Var [L] = (1 — r)/𝑟2, and coefficient of variation Cv [L] = (1 - r)1/2. This theoretical 

description of the length of reservoir system failures has been confirmed via simulation by (Vogel 

and Bolognese, 1994). 

2.0 Materials and Methods 

2.1 Development of a Stochastic Model for Reservoir System State 

2.1.1 Model Structure or Topology 

In other to relate system storage, reliability, and yield to the frequency, magnitude, and duration 

of reservoir system failures and also to relate steady-state reliability 1-q, to the N-year no-failure 

system reliability p a two – state Markov process was employed in the development of the 

stochastic reservoir model. Two states of the reservoir system were defined, one state as the failure 

state and another as the non-failure state. 

The row vector Yt = (Y1t, Y2t) was taken to specify the probability that a reservoir is in either: (1) 

failure state; or (2) regular (non -failure state) in year t. Failure state of the reservoir was taken as 

when the water storage plus the inflow during the year t are less than the contracted 

demand 𝛼𝜇 usually taken as the ratio of the mean annual flow. Vogel (1995) assumption was 

adopted; that the states associated with Yt,   t = 1………N form a Markov chain with transition 

probability matrix. 

                                  A = [
1 − 𝑟 𝑟

𝑓 1 − 𝑓
]                                                                (2.3) 

where f = probability that a failure year follows a regular year, and r = the probability that a regular 

year follows a failure year, Yt = reservoir state at time t, Y1t, Y2t = reservoir states at (1) and (2) 

       1-r 
1-f 

       r 

       1 

Failure state  

       2 

Regular state  
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i.e., failure state and non-failure state. Vogel (1995) assertion that the steady-state probability that 

the reservoir will be in the failure or regular states are f/(r + f) and r/(r + f) regardless of the initial 

state of the reservoir system was employed in the model development.  

 

2.1.2 Model Parameter Estimation  

To specify fully the two-State Markov model, an estimation of r and f were done. Estimation of 

the transition probability r was achieved by first recalling its definition as the probability that the 

reservoir system transfers from the failure (empty) state to the normal (non-empty) state. The 

failure state is defined as the situation when the water in storage plus the inflow for that period Qt 

are less than the demand 𝛼𝜇. Once a failure has occurred, r becomes the conditional probability: 

The probability that a regular year follows a failure year r was estimated using the relationship.  

                                                𝑟 = (1 − 𝑓)                                                                    (2.4) 

The probability that a failure year follows a regular year f was determined using the relationship 

                                              𝑓 = 1 − 𝑝[(
1

𝑁−1
)]                                                                     (2.5) 

Where p is the reliability of the reservoir over N period (Vogel et al., 1987). The values of p and 

N were assumed to be 0.5 and 50years respectively as suggested by (Vogel et al., 1987). The 

annual reliability of the reservoir was determined from the inflow, storage and the demand of the 

reservoir, equation (2.6) was employed in determining annual reliability of the reservoir Ra. 

(Nawaz 1999) The definition of failure by Vogel et al., (1987) that a failure occurs when the inflow 

plus the storage is less than the demand, failure occurs was employed. 

                             𝑅𝑎 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑦𝑒𝑎𝑟𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑛 𝑟𝑒𝑐𝑜𝑟𝑑
                                                     (2.6) 

The unconditional return period T* of the failure years was determined employing equation (2.7) 

and (2.8). 

                                      𝑇 ∗= 1 + 𝑓/𝑓                                                                         (2.7) 

                                 𝑇 ∗=
2−𝑝

[(
1

 𝑁−1
)]

1−𝑝
[(

1
𝑁−1

)]
                                                                                   (2.8) 

The average length of reservoir failure was determined using equation (2.9) (Vogel & Bolognese, 

1994). 

                                                 𝑈𝐿 =  
1

𝑟
                                                                      (2.9) 

 

2.1.3. Performance Evaluation.    

The connection between the resilience index and the likelihood that a regular year follows a failure 

year r and the probability that a failure year follows a regular year f were established using linear 

regression models. Correlation coefficients R2 and standard error estimates were approached to 
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determine the extent of correlation and linearity of the models. Furthermore, the general regression 

models for establishing relationship between the reservoir system states i.e., failure state and non-

failure state is of the form. 

                                          𝜌 = 𝑎 + 𝑏𝜗 + 𝑐𝜏 + 𝜀                                                           (3.0)    

Where a, b, c are model parameters (𝜀) is the error term.      

3.0 Results and Discussion  

3.1 Stochastic Model for Reservoir System State 

 

The reservoir system state was evaluated by determining system state parameters i.e., probabilities 

of failure, annual reliability, unconditional return period of the failure years, resilience and average 

length of reservoir system failure. The results computed are as presented in table 4.9. 

 

 Table: 1.1. Calculated values of Probabilities of failure, Annual reliability, Return      period 

and Length of Time 

parameter Parameter values 

f 0.014 

p 0.50 

r 0.99 

Ra 0.96 

T* 72years 

UL 1year 

f = probability of failure year following regular year, r = probability of regular year following 

failure years, p = Reliability of the reservoir over N period, Ra = Annual reliability, T* = 

Unconditional return period of the failure years, UL = Average length of reservoir failure 

 

Table 1.1 shows the values of the probability that a failure year follows a regular year (f), reliability 

of reservoir over (N) period (p), the probability that a regular year follows a failure year (r), annual 

reliability (Ra) and unconditional return period of failure years (T*) obtained from the application 

of the stochastic (Markov) model and reliability relationships. Similarly the length of reservoir 

failure (UL) is also shown. The value of Ra obtained depicts that the reservoir is substantially 
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reliable at 0.96 reliability; also the unconditional return period of failure years (72years) 

substantiates the reliability of the reservoir. Furthermore, the r, f and UL value obtained indicates 

strong reliability of Kainji reservoir. From the analysis of the reservoir system state the probability 

of failure years following a regular year was determined to be 0.014 which implies low probability 

of occurrence of system state f, the probability of regular year following a failure year was 

estimated as 0.99. The annual reliability Ra was estimated as 0.96, this indicated that the reservoir 

is significantly reliable. This can be seen from the estimate of the unconditional return period of 

failure years (72 years) and the average length of return period of 1 year. From the parameter 

values computed for the reservoir system state it is clear that the reservoir system is significantly 

reliable, adopting the recalibrated policy could yield better performance of the reservoir system.  

The developed models for the reservoir system state are presented in table 1.2. 

            Table: 1.2 Developed Markov models for Reservoir System State 

Developed Models R2 Se 

𝑚 = - 42.5 + 46.4r 

 

𝑚 = 1519𝑟2 −  2855𝑟 + 1342 

0.8033 

0.982 

 

0.002 

𝑚 = 45.6 – 41.8𝐿 0.8176 0.006 

𝑈𝐿 = 0.997126 + 1.1204𝑓 0.9988 0.000889 

𝑚 = 3.935 – 46.4 𝑓 

𝑚 = 0.064𝑓−0.96 

0.8033 

0.999 

0.005 

𝑟 = 1.– f 

𝑟 = 0.005𝑓2 − 0.018𝑓 + 0.029 

0.99999 

0.974 

0.0000 

m = resilience, UL = length of time of failure, r = probability of regular year following a 

failure year, f = probability of failure year following a regular year. 

 

https://bjmas.org/index.php/bjmas/index


British Journal of Multidisciplinary and Advanced Studies: 

Agriculture, 5(4),10-26, 2024 

Print ISSN: 2517-276X 

Online ISSN: 2517-2778 

                                                  Website:  https://bjmas.org/index.php/bjmas/index  

                                  Published by European Centre for Research Training and Development-UK 

20 
 

 
             Fig. 1.3: Relationship between resilience (m) and probability of failure year        

                 following regular year (f) 

 

Figure 1.3 shows that as reservoir resilience increases the probability of failure year following 

regular years decreases the more the resilience m the less the f value, this indicate that f is inversely 

proportional to m, meaning that resilient reservoirs (within year systems) have smaller f values. 
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        Fig. 1.4: Relationship between Length of failure (L) and f 

 

Figure 1.4 shows the relationship between length of failure and the probability of failure year 

following a regular year f it indicates that as f increases L also increases. Meaning that f is directly 

proportional to L.   

 

 Fig. 1.5: Relationship between L and r 

In figure 1.5 shows the relationship between E(L) and r, the figure depicts that as r increases the 

length of failure E(L) decreases i.e., r is inversely proportional to L. 
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 Fig. 1.6: Relationship between m and r 

Figure 1.6 shows the relationship between r and m, it could be observed from the figure that the 

more the reservoir resilience i.e., the reservoir behave more of a within year system (m >1), the 

higher the r value, substantiating the reliability of the reservoir. 

 
Fig. 1.7: Relationship between f and r 
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Figure 1.7 shows the relationship between f and r the relationship translates that as r increases f 

also increases indicating direct proportionality between r and f.   

Conclusion  

A stochastic model was developed for the reservoir system state, and used to evaluate the state of 

the reservoir. The reservoir system state was evaluated by determining system state parameters 

i.e., probabilities of failure, annual reliability, unconditional return period of the failure years, 

resilience and average length of reservoir system failure.  

The value of Ra obtained depicts that the reservoir is substantially reliable at 0.96 reliability; also 

the unconditional return period of failure years (72years) substantiates the reliability of the 

reservoir. Furthermore, the r, f and UL value obtained indicates strong reliability of Kainji 

reservoir.   

From the parameter values computed for the reservoir system state it is clear that the reservoir 

system is significantly reliable, adopting the recalibrated policy could yield better performance of 

the reservoir system. Entice  
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