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ABSTRACT: One of the biggest challenge in software reuse is the huge amount of time and efforts 

required by re-users to evaluate the suitability of reusable components in a search before they are 

selected for reuse.   This becomes more challenging especially where large number of Pareto solutions 

are generated based on multiple objectives of a reuse scenario.  This could lead to wrong choice of 

components and low quality products where the re-user is not patient enough to evaluate the long list 

of partially ordered components presented by the code search engine.  In addressing this challenge, 

many multi-objective evolutionary algorithm (MOEA) frameworks have been introduced namely non-

dominated sorting genetic algorithms, MOEA based on decomposition, preference-based MOEAs and 

many others.  In this research, a type of preference-based MOEA named CROPS (Components Ranking 

Optimization and Selection) Algorithm is presented.  CROPS uses functional requirements and the 

preferential order of non-functional requirements together with high-level objectives for filtering and 

sub-ranking of components to generate distinctive ranks of Pareto sets based on components suitability.  

Using this approach, time and efforts required by a re-user to search, rank and select quality 

components for reuse in a given re-use scenario is minimized.    
 

KEYWORDS: preference-based MOEAs, components ranking optimization and selection (CROPS) 

algorithm, software reuse, Pareto solutions 

 

 

INTRODUCTION 

 

In most reuse scenarios, reusers spent huge amount of time and efforts to evaluate the suitability of 

reusable components from multiple repositories before they are selected for reuse.  Also, where the 

number of Pareto solutions from multiple objectives of a reuse scenario is very large and presented 

without distinctive ranks, the problem could become too complex to handle thereby resulting in wrong 

choice of components if the re-user is not patient enough to evaluate them thoroughly.  In recent times, 

code search engines have significantly address code search problems with respect to functional 

suitability of components for different reuse scenarios.  However, the problem of components ranking 
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according to their non-functional suitability still remains a challenge due to inadequate weighting 

metrics to quantify multiple non-functional requirements needed for such processes (Kessel and 

Atkinson, 2016; Rizk-Allah et al., 2020; Özçevik, 2021).    

 

To address this, the use of preference-based techniques has been presented by some researchers where 

the re-user is required to specify the preferential order of the non-functional properties to be used in 

components ranking rather than specifying quantitative weighting information for such properties since 

it is difficult for re-users to derive such quantitative values (Biswas and Suganthan, 2018; Arsene et al., 

2019).  Unfortunately, despite these efforts, the issue of distinctive ranking of components based on 

non-functional requirements especially with very large Pareto sets still remain unresolved as evident in 

huge amount of components presented by code search engines from a simple component search of a 

given re-use scenario (Arsene et al., 2019; Jha and Mishra, 2016; Cai et al., 2019).  

 

In view of the above, this research proposes a technique for distinctive ranking of Pareto sets of 

components using Preference-based Multi-Objective Evolutionary Algorithm framework.  The 

proposed technique is named, Components Ranking Optimization and Selection Technique, simply 

abbreviated as CROPS Technique.   CROPS uses functional requirements and the preferential order of 

non-functional requirements (i.e. quality criteria) together with other high-level objectives for filtering 

and sub-ranking of components to generate distinctive ranks of Pareto sets based on components 

suitability.  Using CROPS, best components can be easily selected from different repositories with 

minimum time and efforts.    
 
 

RELATED WORKS 

Multi-objective Evolutionary Algorithms have gained prominence in the last decade particularly in 

solving complex computing problems relating to components-based software engineering (CBSE).  

Wide adoption of these algorithms is due to the numerous benefits they provide particularly in finding 

optimal solution to multi-objective problems (Eita et al., Wang et al., 2017; Rajabi & Witt, 2020; Slowik 

& Kwasnicka, 2020).  In ensuring continuous improvement of these algorithms, many research efforts 

have been undertaken.  This section presents a brief review of these related works.  

 

In Chung and Cooper (2004), an approach for ranking and selecting COTs for reuse based on functional 

and non-functional requirements is presented.  This approached named CARE (COTS-Aware 

Requirement Engineering) was designed to improve reusers’ confidence in selected COTS through a 

thorough evaluation of COTs using non-functional requirements (NFR) Framework.  In Grau et al. 

(2004) a technique for COTs ranking and selection named DesCOTS (Description, Evaluation and 

Selection of COTS) is presented.  The technique used ISO 9126 quality model and AHP technique in 

components ranking and selection.  Cortellessa et al. (2008) demonstrated optimal choice of components 

in a multi-objective problem solving scenario using cost minimization as the objective function 

determined by reliability and delivery time constraints in a build-or-buy decisions.  Kwong et al. (2010) 

presented an optimization model for COTS selection using genetic algorithm that is based on efficient 

measurement of cohesion and coupling of modules in COTs to be selected.  Also, in Gupta et al. (2010), 

a technique for solving multi-objective optimization problem in components selection using fuzzy logic 

is introduced.  The techniques which is aimed at increasing the product quality and reliability while 

reducing development cost and delivery time was formulated using fuzzy membership functions. 
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In Kumar et al (2012), the optimal choice of components in a fault-tolerance modular software system 

was demonstrated using maximization of system reliability and minimization of development costs as 

the objective function.  Jha et al. (2014) introduced a fuzzy multi-objective approach for solving 

complex optimization problem involving multiple objective functions namely intra-coupling density 

(ICD), functionality, budget, and quality in choosing the optimal component from repositories.  Also, 

Kessel and Atkinson (2016) presented an approach for ranking software components based on non-

dominated sorting of components driven by relative importance of their non-functional properties as a 

partial ordering.  The approach was supported with an algorithm and Code search engine designed and 

developed accordingly.  In Ekanem and Woherem (2016), a method for extracting stable components 

from legacy systems for reuse is presented with non-functional characteristics used in components 

stability assessment. 

 

In Zhang, Wang & Ye (2018), the new version of comprehensive particle swarm optimizer (CLPSO) 

called multi-objective complete learning particle swarm optimizer MOCLPSO is proposed While 

CLPSO could only solve non-dominated problems, MOCLPSO could solve both dominated and non-

dominated problems. It is also capable of identifying better spread of solutions near the actual Pareto 

front and faster convergence to the true Pareto front than other algorithms. However, it’s a time-

consuming algorithm and takes more fitness evolution value to find the optimal solution of complex 

problems. 

Yi et al. (2020) proposed a new heuristic-based multi-objective optimization algorithm called non-

dominated sorting genetic algorithm II (NSGA-II).  However, it can only solve non-dominated 

problems.  Also, it uses more time and fitness evolution values to determine the optimal results in non-

dominated problems.  In Kalantari et al., (2021), a technique to optimize component selection problem 

through multi-objective optimization is presented.  It maximizes the Fuzzy-Intra Coupling Density 

(Fuzzy-ICD) and functionality as objective function, while using account budget, delivery time, 

reliability, and Fuzzy-ICD as constraints of multi-objective problems. The proposed method was 

implemented using financial-accounting system as a case study which improved the selection process.  

Also, in Ekanem and Agbele (2021), a review of software components identification methods and 

quality assessment criteria was conducted which revealed the use of Quality Model for Object-oriented 

Design (QMOOD) as a major technique for components quality assessment amongst others. 

 

Dou et al. (2021) proposed a new version of particle swarm optimizer (PSO) called multi-objective 

particle swarm optimizer (MOPSO) which enhanced the functions of PSO by integrating the concept of 

Pareto dominance which made it successful in solving dominated complex problems. However, 

MOPSO uses more fitness evolution values to determine the optimal results for a given multi-objective 

optimization problems.  Elahi et al., (2022), proposed an extended version of a multi-objective group 

counselling optimizer called MOGCO-II. The proposed algorithm was demonstrated with Zitzler Deb 

Thieler (ZDT) function where it showed better performances compared with MOGCO, MOPSO, 

MOCLPSO, and NSGA-II.  Also, it takes less fitness evolution value to find the optimal Pareto front.  

 
 

FINDINGS FROM THE REVIEW 

 

The review reveals abundance research efforts in components ranking and selection using MOEA 

frameworks.  However, most of the reviewed approaches are based on components functional 
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requirements in a given reuse scenario.  Furthermore, dealing with ranking and selecting problems that 

are based on non-functional properties of components are still challenging as much work is not done in 

this direction to address such concerns.  More so, existing approaches using non-functional 

characteristics, at best only allow reusers to specify one non-functional objective in the query which in 

most cases, the reuser’s interest may span multiple non-functional properties.  Providing more methods, 

techniques and algorithms that could rank components based on multiple non-functional properties 

would therefore represent a significance step forward in enhancing software reuse. 
 

     

RESEARCH METHODOLOGY 

 

The research was conducted in the following stages: 

i.  Design the CROPS Algorithm 

ii.  Develop the model of CROPS Code Search Engine using the CROPS Algorithm.  

iii. Populate the systems database with hypothetical software components. 

A total of 60 hypothetical components were populated in the system.  Twenty (20) components 

each for the following categories:  Home Automation components (HA), Air pollution 

components (AP) and Weather Forecast components (WF).  These components are designated 

with subscripts which indicates their unique identity.  For instance, HA1 and HA7 represent the 

first and seventh Home Automation component respectively while WF6 represents the sixth 

Weather forecast component.  

iv. Use the Crops Code Search engine to search for component of interest based on specified reuse 

needs 

v.  Record the search results with respect to total number of components retrieved, number of  

     components that meet the specified reuse needs and ranks of each component that meet the reuse  

     needs in the retrieved list. 

 

THE PROPOSED COMPONENTS RANKING OPTIMIZATION AND SELECTION METHOD 
 

This research proposes a method named Components Ranking Optimization and Selection (CROPS) 

with a set of work packages needed to enhance the process of searching, ranking and selecting 

components based on re-user’s preferred quality criteria.  The method is so named because it’s based 

on multi-objective optimization (MOP) technique.  It is designed to utilize multiple functional 

requirements, multiple non-functional requirements and multiple preferred high-level objective criteria 

in the ranking and selection process.  The preferred high-level objectives criteria are sub-divided into 

two categories namely high-level objectives for components filtering and high-level objectives for 

components sub-ranking.  

 

The preferred quality characteristics are drawn from the 6 quality attributes of QMOOD Model (Bansiya 

and Davis, 2002) namely reusability, functionality, effectiveness, understandability, extendibility and 

flexibility) and 8 product quality attributes defined in ISO/IEC 25010:2011 quality model (ISO, 2017) 

namely functional suitability, reliability, performance efficiency, usability, security, compatibility, 

maintainability and portability.  The preferred high-level objectives for filtering include programming 

languages/software development tools, source of components and version while the high-level 

objectives for sub-ranking include number of downloads, cost of integration and release date.   
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A) Description of Stages in CROPS Method 

Figure 1 presents the stages in the method which are explained thus: 
 
 

i. Specification of Re-user’s needs based on Re-use Scenario 
 

In this stage, the re-user specifies requirements of the needed components for reuse scenario. 

Requirements to be specified include components functional requirements and non-functional 

requirements (i.e. quality characteristics).  Both functional requirements and non-functional 

requirements are multi-valued entities, hence suitably implemented with the MOP technique.   These 

needs are to be provided to the code search engine through the user interface (UI) designed to capture 

these inputs. 
 

ii.  Searching the Repositories for Matching Components 
 

When the inputs are provided by the reuser, the code search engine searches the repositories/libraries 

for components that meet the specified criteria.  The search method adopted in this case is the Clustering 

method.  Where matching components are not found, the re-user has to review the specified inputs 

especially the functional requirements and repeat the search process.  In event where matching 

components are found, the process proceeds with stage 3. 
 

iii.  Generation of Pareto Sets from Identified Components 
 

Following a successful identifications of components that match the specified functional and non-

functional requirements, the system applies the non-dominated sorting method in sorting the identified 

components which results in P = [ P1 … Pn] non-dominated sets where 1 to n represent a strict ordering 

of non-distinguishable candidate sets in ascending order. The ranking method adopted for this process 

is Pareto ranking of Non-dominated sorting technique.  At this stage, the partial ranking of the 

components is obtained.  Table 1 illustrates this approach with 21 components.  

 

Table 1: Ranking of identified Non-dominated Components 

Ranking Non-dominated 

Sets (Pi) 

Candidates 

1 P1 {c2, c6, c7, c8, c9, c10, c16, c19, c21} 

2 P2 {c1, c3, c5, c11, c14} 

3 P3 {c4, c12, c17, c20 } 

4 P4 {c13, c15, c18} 
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Fig. 1: UML Diagram Showing Components Ranking and Selection Process 
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In the above Table, P1 is the Pareto front which contains the best components based on the re-use 

scenario, although their distinctive order is not specified by the Pareto ranking method. As mentioned 

earlier, where the number of Pi candidate sets is very large, much efforts and time will be required by 

the re-user to examine all the components manually to identify the best, hence the need for filtering and 

sub-ranking processes as indicated in steps four and five. 

 
 

iv.  Filtering-out of Irrelevant Components using Filtering Criteria 

This stage is introduced to address situations where some components in the Pareto Front may be 

functionally and quality sufficient based on the specified criteria yet not relevant to the re-use scenario.  

As part of the optimization process, the code search engine should be able to identify and filter out such 

components.  For instance, assuming the re-user needed components developed with Python language, 

but in the Pareto front, components developed with C and Java are also included because they are found 

to be functionally and quality sufficient, such components cannot be selected by the re-user because 

they are irrelevant to the re-use scenario and won’t be useful at all.  That’s where filtering comes in.  

The filtering process will be done using high-level objectives for components filtering example 

programming language which are provided for in the User Interface (UI) for the user to interactively 

select from the list.  By selecting Python for instance, all components developed with other languages 

will be automatically removed from the Pareto front.   
 

vi.  Specification of Preferred High-level Objectives for Components Sub-ranking 

Sub-ranking of components is necessary to increase their distinctiveness since the components in the 

Pareto sets are usually partially ordered.  To achieve this, preferred high-level objectives for components 

sub-ranking are needed which include number of downloads, costs of integration and release date.   

These parameters being part of the components definition are accessed by the code search engine and 

utilized accordingly.  Priority is given to components with high number of downloads, low costs of 

integration and recent release dates. 
 

vii.  Sub-ranking of the Components  
 

Using the specified preferred high-level objectives for components ranking the code search engine 

generates a list of optimized components with distinctive ranks in ascending order with the best 

occupying the topmost rank making it possible for the re-user to make his choice.  
 

viii.  Review and Selection of best Components for Reuse 
 

Having presented the non-dominated components in their distinctive ranks revealing components that 

best fit the re-use scenario in terms of functional requirements, quality criteria and preferred high-level 

criteria for components filtering and sub-ranking, the re-user can now review the list and select the 

component considered best in the re-use scenario.   
 

ix.  Re-use of the Selected Components 

The last stage in the process is to integrate the selected components into the re-use project to develop 

software system. 
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B) Parameters for Components Ranking and Selection  

 

CROPS method uses the following parameters for components ranking optimization and selection: 

functional requirements parameters, non-functional requirements parameters, filtering 

Parameters and sub-ranking Parameters.  A brief description of these parameters is given below. 
 

i)  Functional Requirement Parameters  

Functional requirements parameters are parameters that represent a set of functions expected to be 

performed by the required component, based on the re-use scenario.  For instance, the functional 

requirements of language translation component for a re-use project might be specified as follows: the 

components should be able to accept inputs in the form of text, voice and video; translate text inputs 

from one language to another; translate voice inputs from one language to another; translate video inputs 

from one language to another and measure the size of the input and output.  These can be expresses as: 

a set of n specified functional requirements SFR1(C) … SFRn(C) defined for each component required 

by the re-user; where SFR1(C) refers to the first functional requirement while SFRn(C) is the last 

functional requirement in the set.  Similarly, the functional parameter can be designated as, SFR(n). 

 

From the functionality point of view, assessment of a component based on the specified functional 

parameters could result in three possibilities, namely functional sufficient – if a component completely 

fulfils the functional requirements of the re-user; functional insufficient – if a component does not meet 

all the functional requirements of the re-user; and functional superfluous -  if a component provides 

more functionality than is actually needed in a particular reuse scenario (Kessel and Atkinson 2015).  

Therefore, the ideal component from the point of functionality assessment is a components that is 

functional sufficient and without superfluous functionality.   
 

ii)  Non-functional Requirement Parameters  
 

Non-functional requirement parameters representing the set of constraints imposed on the functional 

requirements which are to be met by the component as expressed by the re-user.  Simply put, these 

parameters are used to represent the quality characteristics of components needed for re-use.  These 

include functional suitability, reliability, performance efficiency, usability, security, compatibility, 

maintainability and portability which are specified in ISO/IEC 25010:2011 (ISO, 2017).   For instance, 

the re-user may expect that, the language translation component to be select for re-use should possess 

the following five quality characteristics: maintainability, functional suitability, Usability, Security and 

Portability. 

 

Accordingly, these can be expresses as: 

 a set of m specified Quality Attributes SQA1(C) … SQAm(C) defined for each component required by 

the re-user; where SQA1(C) refers to the first quality attribute and SQAm(C) refers to the last quality 

attribute in the set.  From the above specification SQA1(C) = Maintainability, SQA2(C) = functional 

suitability, SQA3(C) = Usability, SQA4(C) = Security and SQA5(C) = Portability. Therefore, the Quality 

requirement parameter can be designated as, SQA(m). 

 

It is worth mentioning that, the order of these quality criteria is important as it directly affects the ranking 

of the components, hence the re-user is expected to outline them in their order of priority in the space 

provided in the systems UI.  Just as the case with functional parameters, assessment of components in 
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terms of quality criteria could result in components that are quality sufficient – component that 

completely fulfils the quality requirements of the re-user; quality insufficient – component that does not 

meet all the quality requirements of the re-user; and quality superfluous - component that provides more 

functionality than are actually needed by the re-user in a particular reuse scenario.  Therefore, the ideal 

component from the quality requirements point of view is a components that is quality sufficient and 

has no superfluous quality attributes.   
 

iii)  High-level Objective Parameters   
 

This set of parameters are those used to achieve distinctiveness among the Pareto sets.  They are divided 

into two groups, namely filtering parameters and sub-ranking parameters.  As the name implies, filtering 

parameters are used to filter out components that may be part of the Pareto sets but not relevant to the 

reuse scenario while sub-ranking parameters are used in sub-ranking the components in the Pareto front.  

For instance, as explained earlier, if the user is interested in components developed with a particular 

programming language say Python, then there is no need including components developed with other 

programming languages in the Pareto set.  Hence, this parameter is used to represents high level 

objectives like programming language, source of component and version of the components to enable 

the code search engine filter out irrelevant components from the Pareto set.  

 

From the above, components filtering parameters can be expresses as a set of p specified High-level 

Objectives SHF1(C) … SHFp(C) defined for each component; where SHF1(C) refers to the first specified 

high-level objective and SHFp(C) refers to the last specified high-level objective in the set.  Therefore, 

the filtering parameter can be designated as, SHF(p).  Using the above specified order, SHF1(C) = 

Programming language, SHF2(C) = source of component, and SHF3(C) = version of the component.   

 

For the sub-ranking parameters, they are used to ensure that there are some level of distinctiveness 

amongst the retrieved components.  For instance, components in a Pareto front that share the same 

partial rank, can be made distinctive using objectives like number of downloads, released date and cost 

of integration since these objectives will rarely be similar for any two components in the Pareto set.  

However, not ruling out the possibility of same occurrences, where it happens, the re-user can examine 

such components with similar occurrences and make a choice easily since such occurrences may be very 

few and easier to review.  In view of the above, components sub-ranking parameters can be expressed 

as set of q specified High-level Objectives, SHS1(C) … SHSq(C) defined for each component required 

by the re-user; where SHS1(C) refers to the first specified high-level objective and SHSq(C) refers to the 

last specified high-level objective in the set.   

 

Using the above specified order, SHS1(C) = number of downloads, SHS2(C) = release date, and SHS3(C) 

= cost of integration.  It is worth mentioning that, the order of the high-level objectives criteria (i.e. 

filtering and sub-ranking) is important as it directly affects the filtering and sub-ranking of the 

components, hence the re-user is expected to present these requirements and their order of priority via 

the interactive interface of the code search engine.    
 

 
FORMULATION OF MATHEMATICAL MODEL AND DEFINITIONS: 
 

The components ranking problem to be address by the algorithm in this research in viewed as an 

optimization problem.  However, since there are usually many functional and many non-functional 
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criteria to be satisfied, the optimization problem is characterized as a multi-criteria optimization 

problem.  For effective ranking of components, a type of non-dominated sorting Techniques called 

Multi-objective Evolutionary Technique that uses Preference-based Multi-objective Evolutionary 

Algorithm framework to solve multi-objective problem (MOP) is adopted.  Using this technique, a non-

dominated set like the set of best global solutions on the Pareto frontier that contains all solutions that 

are not dominated by other solutions with respect to a given set of objectives will be derived from which 

high-level objectives will be applied to obtain the sub-ranks of the components to discriminate 

components within a non-dominated sets thereby making it easier to select the optimal component.  In 

non-dominated sorting, a candidate A is said to dominate another candidate B, if and only if  

i. there is no objective of A worse than that objective of B and  

ii. there is at least one objective of A better than that objective of B. 
 

From the above, mathematically, the multi-objective problem is represented as: 

Minimize: F(x) = [f1(x), f2(x), …, fM(x)]    ----------------------------------------------------- (1) 

                   Subject to: x ϵ Ω 

Where, Ω is the decision vector (variable) space, M is the number of objectives.  A component x* ϵ Ω 

is a Pareto Optimal if there is no component x ϵ Ω such that F(x) dominates F(x*).  F(x*) is called 

Pareto Optimal (objective) vector.  In other words, any improvement in the Pareto Optimal point in one 

objective must lead to deterioration of at least one other objective.  The set of all the Pareto Optimal 

Components is called Pareto set (PS) and the set of all the Pareto optimal objective vectors is the Pareto 

front (PF). 
 
 

 

a) Non-dominance 

For a set of N specified functional requirements SFR1(C) … SFRn(C), set of M specified Quality 

attributes SQA1(C) … SQAm(C) and set of q specified Filtering criteria SHF1(C) … SHFq(C) defined 

for each component C of a set Ω of components, and all of them being maximized, we say that C1 

dominates C2 If : 

 

i. SFRn(C1) ≥  SFRn(C2) for all 1, …N and SFR(C1) = (SFR1(C1), …, (SFRn(C1)  ≠ SFR(C2)  

ii. and SQAm(C1) ≥  SQAm(C2) for all 1, …M and SQA(C1) = (SFR1(C1), …, (SQAm(C1)  ≠ 

SQA(C2).   

iii. and SHFq(C1) ≥  SHFq(C2) for all 1, …Q and SHF(C1) = (SHF1(C1), …, (SHFq(C1)  ≠ 

SHF(C2).   
 

Simply put, for a given set Ω, a component C* is said to be non-dominated if there is no other component 

dominating C*. 
 

b) Sub-ranking 

For a set of n specified High-level objectives SHR1(C) … SHRn(C) defined for each non-dominated 

component C* of non-dominated set Pi, and all of them being maximized, we say that C*1 is of a higher 

rank than C*2 If  SHRn(C*1) >  SHRn(C*2) for all 1, …N and SHR(C*1) = (SHR1(C*1), …, (SHRn(C*1)  

≠ SHR(C*2)  
 

 

THE PROPOSED COMPONENTS RANKING AND SELECTION ALGORITHM: 
 

Having described the CROPS method and the supporting mathematical model, this section presents a 

brief description of the CROPS Algorithm – a form of Preference-based Multi-objective Evolutionary 
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Algorithms.  The aim of the algorithm is to ensure that components included in the Pareto sets are those 

that are most relevant to the re-use scenario and are ranked in an order that best meet the re-user’s needs.  

The components ranking problem to be address by the algorithm viewed as an optimization problem 

involving many functional and non-functional criteria to be satisfied, hence characterized as a multi-

criteria optimization problem.  For effective ranking of components, the proposed algorithm is based on 

non-dominated sorting algorithm instead of weight-based algorithms since users are not required to 

provide specific objective weightings.  With this, a non-dominated set like the set of best global solutions 

on the Pareto frontier that contains all solutions that are not dominated by other solutions with respect 

to a given set of objectives will be derived from which the best can easily be selected.  Further 

description of the algorithm follow thus: 
 

A) Assumptions for the Algorithm 

The following assumptions are made concerning the proposed algorithm: 

i. unless specified otherwise, functional sufficiency is the most important criteria in the ranking 

algorithm because it’s the primary requirement for components identification without which 

no component will be available for ranking.  

ii. The code search engines are capable of performing automated analysis of code to measure 

quality attributes like reusability, modularity and others which are used in preference-based 

ranking of the components. 

iii. The reusable components are properly catalogued following specified standard to guarantee 

easy assessment and generation of Pareto sets based on specified re-use scenario.  

iv. Information on high-level objective criteria are provided by the re-user using posteriori and 

interactive methods through an interactive interface of the code search engine with their 

preferences adequately accounted for. 

 

B) Design of the Algorithm 

The proposed CROPS Algorithm for ranking and selection software components is given thus:  
 

Algorithm: Components Ranking Optimization and Selection (CROPS) Algorithm 
----------------------------------------------------------------------------------------------------------------------------------- 
1:   // CROPS Algorithm 

2:   // Algorithm to rank and select optimized components from repositories given 

3:   // a set of specified functional requirements, Quality Attributes and high-level objectives  

4: Input: Set of specified functional requirements SFRn(C) specified on component C i.e. (SFR1(C) … SFRn(C) 

5: Input: Set of specified Quality Attributes SQAm(C) specified on component C i.e. (SQA1(C) … SQAm(C) 

6: Input: Set of specified High-level Objectives for Filtering SHFn(C) on Comp.   

7:       i.e. (SHF1(C) … SHFn(C) ≡ {programming language, source of component, version} 

8: Input: Set of specified High-level Objectives for Sub-ranking SHSn(C) on Comp.  

9:        i.e. (SHS1(C) … SHSn(C) ≡ {cost of integration, number of downloads} 

10: Input: Set of Components Cn(R) in repositories i.e. (C1(R) … Cn(R) 

11: Output: Set of non-dominated Components P(R) selected from repositories i.e. P(R) … P(R) 

12: Output: Optimized Component Copt (R) selected from the set of non-dominated components 
 

13:   Require: Cn of length > 0, SFRn of length > 0, SQAm of length > 0, SHOn of length > 0) 
 

14:    Begin 
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15:         compCategory ← getcategory (Comp)  // input components category  

16:         SFRn ← getPrimaryCriteria (functionalReq(i), lastFuncReq) 

17:         SQAm ← getSecondaryCriteria (QualityReq(i), lastQaulityReq) 

18:         SHFn ← getFilteringCriteria (filteringReg(i), lastfilteringReq) 

19:           function rankAndSELECT(Cn, compCategory, SFRn, SQAm, SHFn, SHSn lastPriority) 

20:                 P← nonDominatedSORT (Cn, compCategory, SFRn, SQAm, SHFn) 
 

21:                    qualityPriority ← NEXTQualityPriority (SQAm, lastPriority)  

22:                     If qualityPriority == -1 then                 // No more quality priorities left 
 

23:                     SHSn ← getSubrankingCriteria (SHSn, subRankPriority) 

24:                      subRankingPriority ← NEXTSubRankingPriority (SHSn, lastRankingPriority)  

25:                      If subRankingPriority == -1 then         //  No more quality priorities left 

26:            Return join (P)                        //   to one-dimensional array 

27:               For pi in P Do 

28:                       If length (pi) > 1 then                                   //  Sub-ranking only for sets >1 

29:                       New Pi ← rankAndSELECT (pi, compCategory, SFRn, SQAm, SHOn,        

30:                                  subRankPriority)           //  Recursive Call of rankAndSELECT 

31:               pi ← join(new Pi)                              // to one-dim. array of distinctive ranked components 

32:         Return join(P)                           // to one-dim. array of distinctive ranked components  

33:                       Copt  ← getSelectedComponent (P)    // the selected component by the re-user                                                  
 

34:                     Require: Cn of length > 0, SFRn of length > 0, SQAm of length > 0 
 

35:                     function nonDominatedSort(Cn, compCategory, SFRn, SQAm, SHFn)   

36:                               P ← [ ]                                                      //     Non-dominated sets in ascending order 

37:                               p ← Cn                                                     //      Current dominated set 

38:                      while length (p) > 0 Do 

39:                       n  ← nonDominatedSet(p, compCategory, SFRn, SQAm, SHFn,) // Partial Ordering 

40:                       P  ← APPEND(P, n)                            //  add n to P 

41:                       p  ← p\n                                             //   set p to dominated candidates 

42:                              Return P 

43:    End. 

 

In designing the algorithm, the basic version of non-dominated sorting algorithm is used with some 

enhancements inline with CROPS properties as described earlier.  CROPS algorithm uses two functions 

namely nonDominatedSort and rankAndSELECT functions, where rankAndSELECT is invoked 

recursively.to rank and sub-rank components using quality criteria and high-level objectives for sub-

ranking respectively.  Inputs into the Algorithm namely components category, functional requirements, 

quality criteria and high-level objectives for filtering are entered into the algorithm through the search 

engine interface as indicated in lines 15 to 18.   

 

Thereafter, the function, nonDominatedSort is called in line 20 to execute and generate the non-

dominated sets from a set of components found in various repositories using components category, 

functional requirements, quality criteria and high-level objectives for filtering as specified by the re-
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user (see lines 35 to 41). However, the candidates in each non-dominated sets at this stage are non-

distinguishable since they are presented in a partial order using the specified criteria. 

 

Distinctive ranking of the components is achieved using quality priority and sub-ranking priority (see 

lines 27 to 31).  Using the quality priority, the components are ranked based on the quality interest of 

the re-user for the re-use scenario while the sub-ranking priority are used for distinctive ranking of 

components.  For instance, components in the Pareto Sets may be of equal standing in terms of the 

quality indicators even to the extent of the quality priority specified by the reuse say accuracy, 

availability, portability, security and maintainability (in that order).  To break the tie, number of 

downloads and cost of integration of each component will be used to determine which should occupy 

highest position in the rank and so forth since the probability of two components having the same 

number of downloads and cost of integration is low.  Following the sub-ranking of components, the re-

user can then make his choice from the topmost ranked component(s) as indicated in line 33. 

 
SYSTEM DEVELOPMENT AND VALIDATION: 

A model of the CROPS Code search engine was developed and validated using data generated for the 

research purpose.  A brief description of the system and the validation process follow thus: 
 

a) Description of the CROPS Code Search Engine 

The CROPS search engine has a Main user interface through which the user interact with the system.  

Figure 2 shows the main user interface of the CROPS code search engine. 

 
    Figure 2: The Main User Interface of the CROPS Code Search Engine 
 

On the interface, the space labeled Search here… allows the user to enter text that briefly describes the 

components he intends to search.  The search text contains basic elements for functional requirements 

and components category which are easily extracted by the Code Search engine.  The section indicated 

as key quality requirements allows the user to specify the non-functional characteristics of the 

components in the preferred order.  For instance, a user may be interest in a component with reusability 

as the highest priority followed by modularity, extensibility and so forth.  In this case, he can set this 

order of priority by selecting reusability in the first box, followed by modularity in the second box then 

extensibility in the third box and so forth. It is worth mentioning that, its this order that will determine 

the ranking of the components in the multi-objective optimization system, hence must be accurately 

specified by the reuser. 
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b) Dataset for Validation 

Table 2 shows the dataset used for the systems validation. 
 

Table 2: Dataset for Validation 
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HA1 88 77 91 85 81 90 Raspberry pi Python 

HA2 76 79 90 65 84 66 Arduino Jupyter Notebook 

HA3 91 88 79 78 66 81 Raspberry pi Python 

HA4 92 90 81 88 84 89 Raspberry pi Python 

HA5 69 86 88 90 81 76 Arduino C++ 

HA6 84 73 65 75 90 86 Arduino Java 

HA7 73 78 89 80 96 68 Arduino Jupyter Notebook 

HA8 69 81 83 88 78 79 Raspberry pi Python 

HA9 81 70 66 69 88 88 Arduino Java 

HA10 93 69 89 71 90 90 Raspberry pi C++ 

HA11 79 81 76 91 84 79 Arduino Jupyter Notebook 

HA12 89 93 87 95 74 96 Raspberry pi Python 

HA13 90 69 80 69 78 88 Arduino Kotlin 

HA14 88 81 85 79 76 78 Raspberry pi Python 

HA15 65 73 85 90 66 79 Arduino Python 

HA16 90 63 87 93 69 88 Raspberry pi C++ 

HA17 88 80 69 79 82 81 Arduino Python 

HA18 71 69 88 88 90 63 Raspberry pi Python 

HA19 89 86 89 90 81 88 Arduino C++ 

HA20 88 65 92 83 90 81 Arduino Python 

AP1 69 80 71 73 67 76 Arduino Python 

AP2 65 88 78 93 88 90 Raspberry pi Dart 

AP3 84 69 90 79 78 81 Raspberry pi Jupyter Notebook 

AP4 74 71 76 88 83 75 Raspberry pi Kotlin 

AP5 69 91 79 77 90 77 Arduino JavaScript 

AP6 88 85 88 86 66 80 Raspberry pi C++ 

AP7 79 81 69 73 78 69 Arduino Jupyter Notebook 

AP8 80 90 75 63 90 90 Raspberry pi Kotlin 

AP9 89 96 88 79 66 81 Arduino Kotlin 

AP10 88 78 81 81 84 82 Raspberry pi JavaScript 

AP11 78 88 79 90 81 76 Raspberry pi Jupyter Notebook 

AP12 84 72 85 76 67 88 Arduino Python 

AP13 90 84 79 91 75 81 Arduino Jupyter Notebook 

AP14 69 88 88 69 71 90 Raspberry pi Java 

AP15 87 78 72 82 67 83 Raspberry pi Python 

AP16 90 90 69 90 81 65 Raspberry pi Python 

AP17 88 68 82 82 75 84 Raspberry pi Kotlin 

AP18 69 79 90 76 81 66 Arduino Jupyter Notebook 

AP19 80 88 88 73 77 69 Arduino C++ 

AP20 78 79 69 66 68 75 Raspberry pi Kotlin 

WF1 81 81 67 93 78 79 Raspberry pi Python 

WF2 85 90 81 79 88 80 Raspberry pi JavaScript 

WF3 78 67 78 88 90 89 Raspberry pi C++ 

WF4 66 88 77 90 89 81 Raspberry pi Java 

WF5 87 78 78 86 67 90 Arduino Jupyter Notebook 

WF6 91 81 65 73 79 84 Raspberry pi Kotlin 

WF7 89 90 90 93 88 91 Raspberry pi Jupyter Notebook 

WF8 83 66 86 79 69 88 Raspberry pi C++ 

WF9 67 78 89 88 65 67 Raspberry pi Python 

WF10 69 90 78 55 84 89 Arduino Jupyter Notebook 

WF11 88 81 88 86 74 76 Raspberry pi Kotlin 

WF12 91 84 76 73 87 65 Arduino Jupyter Notebook 

WF13 80 81 69 87 88 78 Raspberry pi C++ 

WF14 78 67 89 79 79 77 Arduino Java 
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The data used in this research were randomly generated and used to represent 20 reusable components 

each in three categories namely Home Automation components (HA), Air Pollution components (AP) 

and Weather Forecast Component (WF) as shown in Table 1.  Also, the non-functional attributes of 

these components are expressed in terms of QMOOD model (Bansiya and Davis, 2002; Özçevik, 2021) 

with the six QMOOD indices namely Reusability, Extendibility, Flexibility, Functionality, 

Understandability and Effectiveness indicated.  From the table, the modularity of H1 for instance is 

expressed as 88% while functionality is 81%.   

 

c) Setting the Search Parameters 

To conduct a search, the required inputs must be provided to the code search engine.  As indicated in 

Figure 3, the reuser is interested in components for home automation system implemented on Raspberry 

Pi.  This expression serves as functional requirements parameter, where the multiple requirements 

namely home automation system, Raspberry Pi and detect intruders are extracted by the code search 

engine and used accordingly.    

 
    Figure 3: Setting up a Search in CROPS Code Search Engine 

 

In terms of the non-functional characteristics, the reuser is interested in the multiple criteria namely 

reusability, modularity, extensibility and effectiveness given in the specified order of priority.  Finally, 

the filtering parameter is set to Python language to enable the system filter out components not satisfying 

this criteria.  The result of this search process is presented in table 4. 

  

 

 

WF15 85 80 88 91 80 89 Raspberry pi Python 

WF16 87 69 79 72 89 69 Raspberry pi Kotlin 

WF17 81 80 90 78 85 82 Arduino Jupyter Notebook 

WF18 79 92 88 73 78 91 Raspberry pi C++ 

WF19 89 71 56 88 90 79 Arduino Java 

WF20 92 79 77 71 85 87 Arduino Python 
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RESULTS AND DISCUSSIONS 

 

Based on the functional requirements, non-functional characteristics, filtering and sub-ranking 

parameters provided by the reuser, the search result from the Code search engine is shown in Table 4.  

 

 
    Figure 4: Search Results from CROPS Code Search Engine 

 

From the list of 60 components in the repository, the search is narrowed down to 20 components in the 

category of components i.e. Home Automation Components as specified by the reuser.  By applying the 

functional requirement “Raspberry Pi”, the list is further reduced to 9 components eliminating other that 

are based on other technologies.  Applying Python as a filter reduces the identified components to 7 as 

indicated in Table 3.  Furthermore, the impact of the sub-ranking parameter is observed in HA14 and 

HA8 that have similar reusability value of 81% and their modularity values are used in sub-ranking 

them.  In this case, HA14 with higher modularity value of 88% is placed above HA8 which value is 69%.  

 

Table 3: Search results based of the given Multi-objective criteria 

 with Reusability as key quality criteria 
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HA12 89 93 87 95 74 96 Raspberry pi Python 

HA4 92 90 81 88 84 89 Raspberry pi Python 

HA3 91 88 79 78 66 81 Raspberry pi Python 

HA14 88 81 85 79 76 78 Raspberry pi Python 

HA8 69 81 83 88 78 79 Raspberry pi Python 
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HA1 88 77 91 85 81 90 Raspberry pi Python 

HA18 71 69 88 88 90 63 Raspberry pi Python 
 

The above illustration shows that this approach is capable of narrowing down the search results to few 

optimal solutions from the Pareto sets that could be selected with minimal time and effort. 

 

The search was repeated with different variations in preferred order of the quality attributes which 

showed interesting results.   By varying the order of the non-functional parameters, results presented in 

Tables 4 -6 were obtained, which indicate the strength of each component with respect to variable 

quality scenario which could further boast the confidence of the reuser in whatever component is 

eventually selected.   The summary of these variations is presented in Table 7 
 

 
 

Table 4: Search results based of the given Multi-objective criteria 

 with Modularity as key quality criteria 
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HA4 92 90 81 88 84 89 Raspberry pi Python 

HA3 91 88 79 78 66 81 Raspberry pi Python 

HA12 89 93 87 95 74 96 Raspberry pi Python 

HA14 88 81 85 79 76 78 Raspberry pi Python 

HA1 88 77 91 85 81 90 Raspberry pi Python 

HA18 71 69 88 88 90 63 Raspberry pi Python 

HA8 69 81 83 88 78 79 Raspberry pi Python 

 

Table 5: Search results based of the given Multi-objective criteria 

 with Effectiveness as key quality criteria 
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HA12 89 93 87 95 74 96 Raspberry pi Python 

HA1 88 77 91 85 81 90 Raspberry pi Python 

HA4 92 90 81 88 84 89 Raspberry pi Python 

HA3 91 88 79 78 66 81 Raspberry pi Python 

HA8 69 81 83 88 78 79 Raspberry pi Python 

HA14 88 81 85 79 76 78 Raspberry pi Python 

HA18 71 69 88 88 90 63 Raspberry pi Python 
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Table 6: Search results based of the given Multi-objective criteria 

 with Extensibility as key quality criteria 
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HA1 88 77 91 85 81 90 Raspberry pi Python 

HA18 71 69 88 88 90 63 Raspberry pi Python 

HA12 89 93 87 95 74 96 Raspberry pi Python 

HA14 88 81 85 79 76 78 Raspberry pi Python 

HA8 69 81 83 88 78 79 Raspberry pi Python 

HA4 92 90 81 88 84 89 Raspberry pi Python 

HA3 91 88 79 78 66 81 Raspberry pi Python 

 

 

Table 7: Summary of Components Ranking Occurrences 
 

 

 

Table 7 shows that, component HA12 dominated in two instances namely reusability and effectiveness, 

HA4 and H1 dominated in one instance each which are modularity and extensibility respectively.  Using 

the above search results, HA12 is best for the reuse scenario. This clearly shows that using CROPS, time 

and efforts required by the reuser to search, rank and select components for reuse in any given reuse 

scenario is minimized while guaranteeing the choice of best components. 

 

CONCLUSION 

The quality of software reuse depends on the quality of reusable components selected from components 

repository for reuse.  The task of getting quality and suitable components based on reuse scenario is 

Component 
No. of occurrences by Ranks 

1st 2nd  3rd  

HA12 
2  (reusability and 

     effectiveness) 
Nil 2 

HA3 Nil 1 1 

HA4 1  (modularity) 1 1 

HA8 Nil Nil nil 

HA10 Nil Nil nil 

HA1 1 (extensibility) 1 nil 

HA14 Nil Nil nil 

HA16 Nil Nil nil 

HA18 Nil 1 nil 
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always a difficult one especially when the number of Pareto solutions in a MOP is very large and 

presented with conflicting objectives.  The use of preference-based MOEAs has been of great benefits 

in addressing these challenge.  Unfortunately, most of these methods do not address search concerns 

involving non-functional requirements (i.e. quality criteria), hence reusers’ interests in this regard are 

usually not accommodated.  CROPS (Components Ranking Optimization and Selection) algorithm - a 

type of preference-based MOEA is designed to address this challenge.  CROPS uses functional 

requirements and the preferred order of non-functional requirements (i.e. quality criteria) together with 

high-level objectives for filtering and sub-ranking of components to generate distinctive ranks of Pareto 

sets identified in a search.  Using this approach, time and efforts required by the re-user to search, rank 

and select components for reuse in a given re-use scenario is minimized.  Moreover, CROPS will enable 

reusers to select quality components from a wide range of components thereby enhancing software 

reuse.     

 

RECOMMENDATIONS: 

The following recommendations are necessary: 

i. Implementation of CROPS Algorithm in code search engines is highly recommended as a means 

of addressing code search challenges involving non-functional characteristics of components.  
 

ii. A standardized method for computing the values of quality attributes beyond those supported by 

QMOOD is highly recommended to cover a wide range of quality attributes that reusers may be 

interested in.    
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