
British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

1

Addressing Multi-objectives Search Challenges in Code

Search Systems using CROPS Algorithms

Bassey Asuquo Ekanem

Computer Science Department, Delta State University of Science and Technology, Ozoro, Delta State,

Nigeria

Kehinde K. Agbele

Computer Science Department, Elizade University, Illara-Mokin, Ondo State, Nigeria

doi: https://doi.org/10.37745/bjmas.2022.0444 Published March 19, 2024

Citation: Ekanem B.A. and Agbele K.K. (2024) Addressing Multi-Objectives Search Challenges in Code Search Systems

using CROPS Algorithms, British Journal of Multidisciplinary and Advanced Studies: Engineering and Technology,

5(2),1-21

ABSTRACT: One of the biggest challenge in software reuse is the huge amount of time and efforts

required by re-users to evaluate the suitability of reusable components in a search before they are

selected for reuse. This becomes more challenging especially where large number of Pareto solutions

are generated based on multiple objectives of a reuse scenario. This could lead to wrong choice of

components and low quality products where the re-user is not patient enough to evaluate the long list

of partially ordered components presented by the code search engine. In addressing this challenge,

many multi-objective evolutionary algorithm (MOEA) frameworks have been introduced namely non-

dominated sorting genetic algorithms, MOEA based on decomposition, preference-based MOEAs and

many others. In this research, a type of preference-based MOEA named CROPS (Components Ranking

Optimization and Selection) Algorithm is presented. CROPS uses functional requirements and the

preferential order of non-functional requirements together with high-level objectives for filtering and

sub-ranking of components to generate distinctive ranks of Pareto sets based on components suitability.

Using this approach, time and efforts required by a re-user to search, rank and select quality

components for reuse in a given re-use scenario is minimized.

KEYWORDS: preference-based MOEAs, components ranking optimization and selection (CROPS)

algorithm, software reuse, Pareto solutions

INTRODUCTION

In most reuse scenarios, reusers spent huge amount of time and efforts to evaluate the suitability of

reusable components from multiple repositories before they are selected for reuse. Also, where the

number of Pareto solutions from multiple objectives of a reuse scenario is very large and presented

without distinctive ranks, the problem could become too complex to handle thereby resulting in wrong

choice of components if the re-user is not patient enough to evaluate them thoroughly. In recent times,

code search engines have significantly address code search problems with respect to functional

suitability of components for different reuse scenarios. However, the problem of components ranking

https://bjmas.org/index.php/bjmas/index
https://doi.org/10.37745/bjmas.2022.0196

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

2

according to their non-functional suitability still remains a challenge due to inadequate weighting

metrics to quantify multiple non-functional requirements needed for such processes (Kessel and

Atkinson, 2016; Rizk-Allah et al., 2020; Özçevik, 2021).

To address this, the use of preference-based techniques has been presented by some researchers where

the re-user is required to specify the preferential order of the non-functional properties to be used in

components ranking rather than specifying quantitative weighting information for such properties since

it is difficult for re-users to derive such quantitative values (Biswas and Suganthan, 2018; Arsene et al.,

2019). Unfortunately, despite these efforts, the issue of distinctive ranking of components based on

non-functional requirements especially with very large Pareto sets still remain unresolved as evident in

huge amount of components presented by code search engines from a simple component search of a

given re-use scenario (Arsene et al., 2019; Jha and Mishra, 2016; Cai et al., 2019).

In view of the above, this research proposes a technique for distinctive ranking of Pareto sets of

components using Preference-based Multi-Objective Evolutionary Algorithm framework. The

proposed technique is named, Components Ranking Optimization and Selection Technique, simply

abbreviated as CROPS Technique. CROPS uses functional requirements and the preferential order of

non-functional requirements (i.e. quality criteria) together with other high-level objectives for filtering

and sub-ranking of components to generate distinctive ranks of Pareto sets based on components

suitability. Using CROPS, best components can be easily selected from different repositories with

minimum time and efforts.

RELATED WORKS

Multi-objective Evolutionary Algorithms have gained prominence in the last decade particularly in

solving complex computing problems relating to components-based software engineering (CBSE).

Wide adoption of these algorithms is due to the numerous benefits they provide particularly in finding

optimal solution to multi-objective problems (Eita et al., Wang et al., 2017; Rajabi & Witt, 2020; Slowik

& Kwasnicka, 2020). In ensuring continuous improvement of these algorithms, many research efforts

have been undertaken. This section presents a brief review of these related works.

In Chung and Cooper (2004), an approach for ranking and selecting COTs for reuse based on functional

and non-functional requirements is presented. This approached named CARE (COTS-Aware

Requirement Engineering) was designed to improve reusers’ confidence in selected COTS through a

thorough evaluation of COTs using non-functional requirements (NFR) Framework. In Grau et al.

(2004) a technique for COTs ranking and selection named DesCOTS (Description, Evaluation and

Selection of COTS) is presented. The technique used ISO 9126 quality model and AHP technique in

components ranking and selection. Cortellessa et al. (2008) demonstrated optimal choice of components

in a multi-objective problem solving scenario using cost minimization as the objective function

determined by reliability and delivery time constraints in a build-or-buy decisions. Kwong et al. (2010)

presented an optimization model for COTS selection using genetic algorithm that is based on efficient

measurement of cohesion and coupling of modules in COTs to be selected. Also, in Gupta et al. (2010),

a technique for solving multi-objective optimization problem in components selection using fuzzy logic

is introduced. The techniques which is aimed at increasing the product quality and reliability while

reducing development cost and delivery time was formulated using fuzzy membership functions.

https://bjmas.org/index.php/bjmas/index
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044317/#ref-30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044317/#ref-33
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044317/#ref-33

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

3

In Kumar et al (2012), the optimal choice of components in a fault-tolerance modular software system

was demonstrated using maximization of system reliability and minimization of development costs as

the objective function. Jha et al. (2014) introduced a fuzzy multi-objective approach for solving

complex optimization problem involving multiple objective functions namely intra-coupling density

(ICD), functionality, budget, and quality in choosing the optimal component from repositories. Also,

Kessel and Atkinson (2016) presented an approach for ranking software components based on non-

dominated sorting of components driven by relative importance of their non-functional properties as a

partial ordering. The approach was supported with an algorithm and Code search engine designed and

developed accordingly. In Ekanem and Woherem (2016), a method for extracting stable components

from legacy systems for reuse is presented with non-functional characteristics used in components

stability assessment.

In Zhang, Wang & Ye (2018), the new version of comprehensive particle swarm optimizer (CLPSO)

called multi-objective complete learning particle swarm optimizer MOCLPSO is proposed While

CLPSO could only solve non-dominated problems, MOCLPSO could solve both dominated and non-

dominated problems. It is also capable of identifying better spread of solutions near the actual Pareto

front and faster convergence to the true Pareto front than other algorithms. However, it’s a time-

consuming algorithm and takes more fitness evolution value to find the optimal solution of complex

problems.

Yi et al. (2020) proposed a new heuristic-based multi-objective optimization algorithm called non-

dominated sorting genetic algorithm II (NSGA-II). However, it can only solve non-dominated

problems. Also, it uses more time and fitness evolution values to determine the optimal results in non-

dominated problems. In Kalantari et al., (2021), a technique to optimize component selection problem

through multi-objective optimization is presented. It maximizes the Fuzzy-Intra Coupling Density

(Fuzzy-ICD) and functionality as objective function, while using account budget, delivery time,

reliability, and Fuzzy-ICD as constraints of multi-objective problems. The proposed method was

implemented using financial-accounting system as a case study which improved the selection process.

Also, in Ekanem and Agbele (2021), a review of software components identification methods and

quality assessment criteria was conducted which revealed the use of Quality Model for Object-oriented

Design (QMOOD) as a major technique for components quality assessment amongst others.

Dou et al. (2021) proposed a new version of particle swarm optimizer (PSO) called multi-objective

particle swarm optimizer (MOPSO) which enhanced the functions of PSO by integrating the concept of

Pareto dominance which made it successful in solving dominated complex problems. However,

MOPSO uses more fitness evolution values to determine the optimal results for a given multi-objective

optimization problems. Elahi et al., (2022), proposed an extended version of a multi-objective group

counselling optimizer called MOGCO-II. The proposed algorithm was demonstrated with Zitzler Deb

Thieler (ZDT) function where it showed better performances compared with MOGCO, MOPSO,

MOCLPSO, and NSGA-II. Also, it takes less fitness evolution value to find the optimal Pareto front.

FINDINGS FROM THE REVIEW

The review reveals abundance research efforts in components ranking and selection using MOEA

frameworks. However, most of the reviewed approaches are based on components functional

https://bjmas.org/index.php/bjmas/index
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044317/#ref-39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044317/#ref-38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044317/#ref-10

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

4

requirements in a given reuse scenario. Furthermore, dealing with ranking and selecting problems that

are based on non-functional properties of components are still challenging as much work is not done in

this direction to address such concerns. More so, existing approaches using non-functional

characteristics, at best only allow reusers to specify one non-functional objective in the query which in

most cases, the reuser’s interest may span multiple non-functional properties. Providing more methods,

techniques and algorithms that could rank components based on multiple non-functional properties

would therefore represent a significance step forward in enhancing software reuse.

RESEARCH METHODOLOGY

The research was conducted in the following stages:

i. Design the CROPS Algorithm

ii. Develop the model of CROPS Code Search Engine using the CROPS Algorithm.

iii. Populate the systems database with hypothetical software components.

A total of 60 hypothetical components were populated in the system. Twenty (20) components

each for the following categories: Home Automation components (HA), Air pollution

components (AP) and Weather Forecast components (WF). These components are designated

with subscripts which indicates their unique identity. For instance, HA1 and HA7 represent the

first and seventh Home Automation component respectively while WF6 represents the sixth

Weather forecast component.

iv. Use the Crops Code Search engine to search for component of interest based on specified reuse

needs

v. Record the search results with respect to total number of components retrieved, number of

 components that meet the specified reuse needs and ranks of each component that meet the reuse

 needs in the retrieved list.

THE PROPOSED COMPONENTS RANKING OPTIMIZATION AND SELECTION METHOD

This research proposes a method named Components Ranking Optimization and Selection (CROPS)

with a set of work packages needed to enhance the process of searching, ranking and selecting

components based on re-user’s preferred quality criteria. The method is so named because it’s based

on multi-objective optimization (MOP) technique. It is designed to utilize multiple functional

requirements, multiple non-functional requirements and multiple preferred high-level objective criteria

in the ranking and selection process. The preferred high-level objectives criteria are sub-divided into

two categories namely high-level objectives for components filtering and high-level objectives for

components sub-ranking.

The preferred quality characteristics are drawn from the 6 quality attributes of QMOOD Model (Bansiya

and Davis, 2002) namely reusability, functionality, effectiveness, understandability, extendibility and

flexibility) and 8 product quality attributes defined in ISO/IEC 25010:2011 quality model (ISO, 2017)

namely functional suitability, reliability, performance efficiency, usability, security, compatibility,

maintainability and portability. The preferred high-level objectives for filtering include programming

languages/software development tools, source of components and version while the high-level

objectives for sub-ranking include number of downloads, cost of integration and release date.

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

5

A) Description of Stages in CROPS Method

Figure 1 presents the stages in the method which are explained thus:

i. Specification of Re-user’s needs based on Re-use Scenario

In this stage, the re-user specifies requirements of the needed components for reuse scenario.

Requirements to be specified include components functional requirements and non-functional

requirements (i.e. quality characteristics). Both functional requirements and non-functional

requirements are multi-valued entities, hence suitably implemented with the MOP technique. These

needs are to be provided to the code search engine through the user interface (UI) designed to capture

these inputs.

ii. Searching the Repositories for Matching Components

When the inputs are provided by the reuser, the code search engine searches the repositories/libraries

for components that meet the specified criteria. The search method adopted in this case is the Clustering

method. Where matching components are not found, the re-user has to review the specified inputs

especially the functional requirements and repeat the search process. In event where matching

components are found, the process proceeds with stage 3.

iii. Generation of Pareto Sets from Identified Components

Following a successful identifications of components that match the specified functional and non-

functional requirements, the system applies the non-dominated sorting method in sorting the identified

components which results in P = [P1 … Pn] non-dominated sets where 1 to n represent a strict ordering

of non-distinguishable candidate sets in ascending order. The ranking method adopted for this process

is Pareto ranking of Non-dominated sorting technique. At this stage, the partial ranking of the

components is obtained. Table 1 illustrates this approach with 21 components.

Table 1: Ranking of identified Non-dominated Components

Ranking Non-dominated

Sets (Pi)

Candidates

1 P1 {c2, c6, c7, c8, c9, c10, c16, c19, c21}

2 P2 {c1, c3, c5, c11, c14}

3 P3 {c4, c12, c17, c20 }

4 P4 {c13, c15, c18}

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

6

Fig. 1: UML Diagram Showing Components Ranking and Selection Process

Searching the Repositories for matching components using
 Functional requirements, Quality Criteria and
components category

Review
Specifications

No

Specification of re-user’s needs based on re-use scenario:
- Functional requirements with preference
- Quality Criteria with preference
- Filtering Criteria
- Components category

-

Generation of Pareto Sets based on specified Functional
requirements, Quality Criteria and components category

Filtering-out of Irrelevant Components using Filtering Criteria

Specification of high-level objectives for components Sub-ranking:
- Released Date
- Number of downloads
- Cost of integration

Sub-ranking of the Components using Sub-ranking Criteria

Review and Selection of best Component from the sub-ranked list

Yes

Yes

No

Re-use of the Selected Component

Need more
Components?

Components

found?

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

7

In the above Table, P1 is the Pareto front which contains the best components based on the re-use

scenario, although their distinctive order is not specified by the Pareto ranking method. As mentioned

earlier, where the number of Pi candidate sets is very large, much efforts and time will be required by

the re-user to examine all the components manually to identify the best, hence the need for filtering and

sub-ranking processes as indicated in steps four and five.

iv. Filtering-out of Irrelevant Components using Filtering Criteria

This stage is introduced to address situations where some components in the Pareto Front may be

functionally and quality sufficient based on the specified criteria yet not relevant to the re-use scenario.

As part of the optimization process, the code search engine should be able to identify and filter out such

components. For instance, assuming the re-user needed components developed with Python language,

but in the Pareto front, components developed with C and Java are also included because they are found

to be functionally and quality sufficient, such components cannot be selected by the re-user because

they are irrelevant to the re-use scenario and won’t be useful at all. That’s where filtering comes in.

The filtering process will be done using high-level objectives for components filtering example

programming language which are provided for in the User Interface (UI) for the user to interactively

select from the list. By selecting Python for instance, all components developed with other languages

will be automatically removed from the Pareto front.

vi. Specification of Preferred High-level Objectives for Components Sub-ranking

Sub-ranking of components is necessary to increase their distinctiveness since the components in the

Pareto sets are usually partially ordered. To achieve this, preferred high-level objectives for components

sub-ranking are needed which include number of downloads, costs of integration and release date.

These parameters being part of the components definition are accessed by the code search engine and

utilized accordingly. Priority is given to components with high number of downloads, low costs of

integration and recent release dates.

vii. Sub-ranking of the Components

Using the specified preferred high-level objectives for components ranking the code search engine

generates a list of optimized components with distinctive ranks in ascending order with the best

occupying the topmost rank making it possible for the re-user to make his choice.

viii. Review and Selection of best Components for Reuse

Having presented the non-dominated components in their distinctive ranks revealing components that

best fit the re-use scenario in terms of functional requirements, quality criteria and preferred high-level

criteria for components filtering and sub-ranking, the re-user can now review the list and select the

component considered best in the re-use scenario.

ix. Re-use of the Selected Components

The last stage in the process is to integrate the selected components into the re-use project to develop

software system.

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

8

B) Parameters for Components Ranking and Selection

CROPS method uses the following parameters for components ranking optimization and selection:

functional requirements parameters, non-functional requirements parameters, filtering

Parameters and sub-ranking Parameters. A brief description of these parameters is given below.

i) Functional Requirement Parameters

Functional requirements parameters are parameters that represent a set of functions expected to be

performed by the required component, based on the re-use scenario. For instance, the functional

requirements of language translation component for a re-use project might be specified as follows: the

components should be able to accept inputs in the form of text, voice and video; translate text inputs

from one language to another; translate voice inputs from one language to another; translate video inputs

from one language to another and measure the size of the input and output. These can be expresses as:

a set of n specified functional requirements SFR1(C) … SFRn(C) defined for each component required

by the re-user; where SFR1(C) refers to the first functional requirement while SFRn(C) is the last

functional requirement in the set. Similarly, the functional parameter can be designated as, SFR(n).

From the functionality point of view, assessment of a component based on the specified functional

parameters could result in three possibilities, namely functional sufficient – if a component completely

fulfils the functional requirements of the re-user; functional insufficient – if a component does not meet

all the functional requirements of the re-user; and functional superfluous - if a component provides

more functionality than is actually needed in a particular reuse scenario (Kessel and Atkinson 2015).

Therefore, the ideal component from the point of functionality assessment is a components that is

functional sufficient and without superfluous functionality.

ii) Non-functional Requirement Parameters

Non-functional requirement parameters representing the set of constraints imposed on the functional

requirements which are to be met by the component as expressed by the re-user. Simply put, these

parameters are used to represent the quality characteristics of components needed for re-use. These

include functional suitability, reliability, performance efficiency, usability, security, compatibility,

maintainability and portability which are specified in ISO/IEC 25010:2011 (ISO, 2017). For instance,

the re-user may expect that, the language translation component to be select for re-use should possess

the following five quality characteristics: maintainability, functional suitability, Usability, Security and

Portability.

Accordingly, these can be expresses as:

 a set of m specified Quality Attributes SQA1(C) … SQAm(C) defined for each component required by

the re-user; where SQA1(C) refers to the first quality attribute and SQAm(C) refers to the last quality

attribute in the set. From the above specification SQA1(C) = Maintainability, SQA2(C) = functional

suitability, SQA3(C) = Usability, SQA4(C) = Security and SQA5(C) = Portability. Therefore, the Quality

requirement parameter can be designated as, SQA(m).

It is worth mentioning that, the order of these quality criteria is important as it directly affects the ranking

of the components, hence the re-user is expected to outline them in their order of priority in the space

provided in the systems UI. Just as the case with functional parameters, assessment of components in

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

9

terms of quality criteria could result in components that are quality sufficient – component that

completely fulfils the quality requirements of the re-user; quality insufficient – component that does not

meet all the quality requirements of the re-user; and quality superfluous - component that provides more

functionality than are actually needed by the re-user in a particular reuse scenario. Therefore, the ideal

component from the quality requirements point of view is a components that is quality sufficient and

has no superfluous quality attributes.

iii) High-level Objective Parameters

This set of parameters are those used to achieve distinctiveness among the Pareto sets. They are divided

into two groups, namely filtering parameters and sub-ranking parameters. As the name implies, filtering

parameters are used to filter out components that may be part of the Pareto sets but not relevant to the

reuse scenario while sub-ranking parameters are used in sub-ranking the components in the Pareto front.

For instance, as explained earlier, if the user is interested in components developed with a particular

programming language say Python, then there is no need including components developed with other

programming languages in the Pareto set. Hence, this parameter is used to represents high level

objectives like programming language, source of component and version of the components to enable

the code search engine filter out irrelevant components from the Pareto set.

From the above, components filtering parameters can be expresses as a set of p specified High-level

Objectives SHF1(C) … SHFp(C) defined for each component; where SHF1(C) refers to the first specified

high-level objective and SHFp(C) refers to the last specified high-level objective in the set. Therefore,

the filtering parameter can be designated as, SHF(p). Using the above specified order, SHF1(C) =

Programming language, SHF2(C) = source of component, and SHF3(C) = version of the component.

For the sub-ranking parameters, they are used to ensure that there are some level of distinctiveness

amongst the retrieved components. For instance, components in a Pareto front that share the same

partial rank, can be made distinctive using objectives like number of downloads, released date and cost

of integration since these objectives will rarely be similar for any two components in the Pareto set.

However, not ruling out the possibility of same occurrences, where it happens, the re-user can examine

such components with similar occurrences and make a choice easily since such occurrences may be very

few and easier to review. In view of the above, components sub-ranking parameters can be expressed

as set of q specified High-level Objectives, SHS1(C) … SHSq(C) defined for each component required

by the re-user; where SHS1(C) refers to the first specified high-level objective and SHSq(C) refers to the

last specified high-level objective in the set.

Using the above specified order, SHS1(C) = number of downloads, SHS2(C) = release date, and SHS3(C)

= cost of integration. It is worth mentioning that, the order of the high-level objectives criteria (i.e.

filtering and sub-ranking) is important as it directly affects the filtering and sub-ranking of the

components, hence the re-user is expected to present these requirements and their order of priority via

the interactive interface of the code search engine.

FORMULATION OF MATHEMATICAL MODEL AND DEFINITIONS:

The components ranking problem to be address by the algorithm in this research in viewed as an

optimization problem. However, since there are usually many functional and many non-functional

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

10

criteria to be satisfied, the optimization problem is characterized as a multi-criteria optimization

problem. For effective ranking of components, a type of non-dominated sorting Techniques called

Multi-objective Evolutionary Technique that uses Preference-based Multi-objective Evolutionary

Algorithm framework to solve multi-objective problem (MOP) is adopted. Using this technique, a non-

dominated set like the set of best global solutions on the Pareto frontier that contains all solutions that

are not dominated by other solutions with respect to a given set of objectives will be derived from which

high-level objectives will be applied to obtain the sub-ranks of the components to discriminate

components within a non-dominated sets thereby making it easier to select the optimal component. In

non-dominated sorting, a candidate A is said to dominate another candidate B, if and only if

i. there is no objective of A worse than that objective of B and

ii. there is at least one objective of A better than that objective of B.

From the above, mathematically, the multi-objective problem is represented as:

Minimize: F(x) = [f1(x), f2(x), …, fM(x)] --- (1)

 Subject to: x ϵ Ω

Where, Ω is the decision vector (variable) space, M is the number of objectives. A component x* ϵ Ω

is a Pareto Optimal if there is no component x ϵ Ω such that F(x) dominates F(x*). F(x*) is called

Pareto Optimal (objective) vector. In other words, any improvement in the Pareto Optimal point in one

objective must lead to deterioration of at least one other objective. The set of all the Pareto Optimal

Components is called Pareto set (PS) and the set of all the Pareto optimal objective vectors is the Pareto

front (PF).

a) Non-dominance

For a set of N specified functional requirements SFR1(C) … SFRn(C), set of M specified Quality

attributes SQA1(C) … SQAm(C) and set of q specified Filtering criteria SHF1(C) … SHFq(C) defined

for each component C of a set Ω of components, and all of them being maximized, we say that C1

dominates C2 If :

i. SFRn(C1) ≥ SFRn(C2) for all 1, …N and SFR(C1) = (SFR1(C1), …, (SFRn(C1) ≠ SFR(C2)

ii. and SQAm(C1) ≥ SQAm(C2) for all 1, …M and SQA(C1) = (SFR1(C1), …, (SQAm(C1) ≠

SQA(C2).

iii. and SHFq(C1) ≥ SHFq(C2) for all 1, …Q and SHF(C1) = (SHF1(C1), …, (SHFq(C1) ≠

SHF(C2).

Simply put, for a given set Ω, a component C* is said to be non-dominated if there is no other component

dominating C*.

b) Sub-ranking

For a set of n specified High-level objectives SHR1(C) … SHRn(C) defined for each non-dominated

component C* of non-dominated set Pi, and all of them being maximized, we say that C*1 is of a higher

rank than C*2 If SHRn(C*1) > SHRn(C*2) for all 1, …N and SHR(C*1) = (SHR1(C*1), …, (SHRn(C*1)

≠ SHR(C*2)

THE PROPOSED COMPONENTS RANKING AND SELECTION ALGORITHM:

Having described the CROPS method and the supporting mathematical model, this section presents a

brief description of the CROPS Algorithm – a form of Preference-based Multi-objective Evolutionary

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

11

Algorithms. The aim of the algorithm is to ensure that components included in the Pareto sets are those

that are most relevant to the re-use scenario and are ranked in an order that best meet the re-user’s needs.

The components ranking problem to be address by the algorithm viewed as an optimization problem

involving many functional and non-functional criteria to be satisfied, hence characterized as a multi-

criteria optimization problem. For effective ranking of components, the proposed algorithm is based on

non-dominated sorting algorithm instead of weight-based algorithms since users are not required to

provide specific objective weightings. With this, a non-dominated set like the set of best global solutions

on the Pareto frontier that contains all solutions that are not dominated by other solutions with respect

to a given set of objectives will be derived from which the best can easily be selected. Further

description of the algorithm follow thus:

A) Assumptions for the Algorithm

The following assumptions are made concerning the proposed algorithm:

i. unless specified otherwise, functional sufficiency is the most important criteria in the ranking

algorithm because it’s the primary requirement for components identification without which

no component will be available for ranking.

ii. The code search engines are capable of performing automated analysis of code to measure

quality attributes like reusability, modularity and others which are used in preference-based

ranking of the components.

iii. The reusable components are properly catalogued following specified standard to guarantee

easy assessment and generation of Pareto sets based on specified re-use scenario.

iv. Information on high-level objective criteria are provided by the re-user using posteriori and

interactive methods through an interactive interface of the code search engine with their

preferences adequately accounted for.

B) Design of the Algorithm

The proposed CROPS Algorithm for ranking and selection software components is given thus:

Algorithm: Components Ranking Optimization and Selection (CROPS) Algorithm

1: // CROPS Algorithm

2: // Algorithm to rank and select optimized components from repositories given

3: // a set of specified functional requirements, Quality Attributes and high-level objectives

4: Input: Set of specified functional requirements SFRn(C) specified on component C i.e. (SFR1(C) … SFRn(C)

5: Input: Set of specified Quality Attributes SQAm(C) specified on component C i.e. (SQA1(C) … SQAm(C)

6: Input: Set of specified High-level Objectives for Filtering SHFn(C) on Comp.

7: i.e. (SHF1(C) … SHFn(C) ≡ {programming language, source of component, version}

8: Input: Set of specified High-level Objectives for Sub-ranking SHSn(C) on Comp.

9: i.e. (SHS1(C) … SHSn(C) ≡ {cost of integration, number of downloads}

10: Input: Set of Components Cn(R) in repositories i.e. (C1(R) … Cn(R)

11: Output: Set of non-dominated Components P(R) selected from repositories i.e. P(R) … P(R)

12: Output: Optimized Component Copt (R) selected from the set of non-dominated components

13: Require: Cn of length > 0, SFRn of length > 0, SQAm of length > 0, SHOn of length > 0)

14: Begin

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

12

15: compCategory ← getcategory (Comp) // input components category

16: SFRn ← getPrimaryCriteria (functionalReq(i), lastFuncReq)

17: SQAm ← getSecondaryCriteria (QualityReq(i), lastQaulityReq)

18: SHFn ← getFilteringCriteria (filteringReg(i), lastfilteringReq)

19: function rankAndSELECT(Cn, compCategory, SFRn, SQAm, SHFn, SHSn lastPriority)

20: P← nonDominatedSORT (Cn, compCategory, SFRn, SQAm, SHFn)

21: qualityPriority ← NEXTQualityPriority (SQAm, lastPriority)

22: If qualityPriority == -1 then // No more quality priorities left

23: SHSn ← getSubrankingCriteria (SHSn, subRankPriority)

24: subRankingPriority ← NEXTSubRankingPriority (SHSn, lastRankingPriority)

25: If subRankingPriority == -1 then // No more quality priorities left

26: Return join (P) // to one-dimensional array

27: For pi in P Do

28: If length (pi) > 1 then // Sub-ranking only for sets >1

29: New Pi ← rankAndSELECT (pi, compCategory, SFRn, SQAm, SHOn,

30: subRankPriority) // Recursive Call of rankAndSELECT

31: pi ← join(new Pi) // to one-dim. array of distinctive ranked components

32: Return join(P) // to one-dim. array of distinctive ranked components

33: Copt ← getSelectedComponent (P) // the selected component by the re-user

34: Require: Cn of length > 0, SFRn of length > 0, SQAm of length > 0

35: function nonDominatedSort(Cn, compCategory, SFRn, SQAm, SHFn)

36: P ← [] // Non-dominated sets in ascending order

37: p ← Cn // Current dominated set

38: while length (p) > 0 Do

39: n ← nonDominatedSet(p, compCategory, SFRn, SQAm, SHFn,) // Partial Ordering

40: P ← APPEND(P, n) // add n to P

41: p ← p\n // set p to dominated candidates

42: Return P

43: End.

In designing the algorithm, the basic version of non-dominated sorting algorithm is used with some

enhancements inline with CROPS properties as described earlier. CROPS algorithm uses two functions

namely nonDominatedSort and rankAndSELECT functions, where rankAndSELECT is invoked

recursively.to rank and sub-rank components using quality criteria and high-level objectives for sub-

ranking respectively. Inputs into the Algorithm namely components category, functional requirements,

quality criteria and high-level objectives for filtering are entered into the algorithm through the search

engine interface as indicated in lines 15 to 18.

Thereafter, the function, nonDominatedSort is called in line 20 to execute and generate the non-

dominated sets from a set of components found in various repositories using components category,

functional requirements, quality criteria and high-level objectives for filtering as specified by the re-

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

13

user (see lines 35 to 41). However, the candidates in each non-dominated sets at this stage are non-

distinguishable since they are presented in a partial order using the specified criteria.

Distinctive ranking of the components is achieved using quality priority and sub-ranking priority (see

lines 27 to 31). Using the quality priority, the components are ranked based on the quality interest of

the re-user for the re-use scenario while the sub-ranking priority are used for distinctive ranking of

components. For instance, components in the Pareto Sets may be of equal standing in terms of the

quality indicators even to the extent of the quality priority specified by the reuse say accuracy,

availability, portability, security and maintainability (in that order). To break the tie, number of

downloads and cost of integration of each component will be used to determine which should occupy

highest position in the rank and so forth since the probability of two components having the same

number of downloads and cost of integration is low. Following the sub-ranking of components, the re-

user can then make his choice from the topmost ranked component(s) as indicated in line 33.

SYSTEM DEVELOPMENT AND VALIDATION:

A model of the CROPS Code search engine was developed and validated using data generated for the

research purpose. A brief description of the system and the validation process follow thus:

a) Description of the CROPS Code Search Engine

The CROPS search engine has a Main user interface through which the user interact with the system.

Figure 2 shows the main user interface of the CROPS code search engine.

 Figure 2: The Main User Interface of the CROPS Code Search Engine

On the interface, the space labeled Search here… allows the user to enter text that briefly describes the

components he intends to search. The search text contains basic elements for functional requirements

and components category which are easily extracted by the Code Search engine. The section indicated

as key quality requirements allows the user to specify the non-functional characteristics of the

components in the preferred order. For instance, a user may be interest in a component with reusability

as the highest priority followed by modularity, extensibility and so forth. In this case, he can set this

order of priority by selecting reusability in the first box, followed by modularity in the second box then

extensibility in the third box and so forth. It is worth mentioning that, its this order that will determine

the ranking of the components in the multi-objective optimization system, hence must be accurately

specified by the reuser.

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

14

b) Dataset for Validation

Table 2 shows the dataset used for the systems validation.

Table 2: Dataset for Validation

C
o

m
p

o
n

e
n

t

QMOOD indices (%)

te
c
h

n
o
lo

g
y

la
n

g
u

a
g

e

m
o

d
u

la
r
it

y

r
e
u

sa
b

il
it

y

e
x

te
n

si
b

il
it

y

U
n

d
e
r
st

a
n

d
-

b
il

it
y

fu
n

c
ti

o
n

a
li

ty

e
ff

e
c
ti

v
e
n

es
s

HA1 88 77 91 85 81 90 Raspberry pi Python

HA2 76 79 90 65 84 66 Arduino Jupyter Notebook

HA3 91 88 79 78 66 81 Raspberry pi Python

HA4 92 90 81 88 84 89 Raspberry pi Python

HA5 69 86 88 90 81 76 Arduino C++

HA6 84 73 65 75 90 86 Arduino Java

HA7 73 78 89 80 96 68 Arduino Jupyter Notebook

HA8 69 81 83 88 78 79 Raspberry pi Python

HA9 81 70 66 69 88 88 Arduino Java

HA10 93 69 89 71 90 90 Raspberry pi C++

HA11 79 81 76 91 84 79 Arduino Jupyter Notebook

HA12 89 93 87 95 74 96 Raspberry pi Python

HA13 90 69 80 69 78 88 Arduino Kotlin

HA14 88 81 85 79 76 78 Raspberry pi Python

HA15 65 73 85 90 66 79 Arduino Python

HA16 90 63 87 93 69 88 Raspberry pi C++

HA17 88 80 69 79 82 81 Arduino Python

HA18 71 69 88 88 90 63 Raspberry pi Python

HA19 89 86 89 90 81 88 Arduino C++

HA20 88 65 92 83 90 81 Arduino Python

AP1 69 80 71 73 67 76 Arduino Python

AP2 65 88 78 93 88 90 Raspberry pi Dart

AP3 84 69 90 79 78 81 Raspberry pi Jupyter Notebook

AP4 74 71 76 88 83 75 Raspberry pi Kotlin

AP5 69 91 79 77 90 77 Arduino JavaScript

AP6 88 85 88 86 66 80 Raspberry pi C++

AP7 79 81 69 73 78 69 Arduino Jupyter Notebook

AP8 80 90 75 63 90 90 Raspberry pi Kotlin

AP9 89 96 88 79 66 81 Arduino Kotlin

AP10 88 78 81 81 84 82 Raspberry pi JavaScript

AP11 78 88 79 90 81 76 Raspberry pi Jupyter Notebook

AP12 84 72 85 76 67 88 Arduino Python

AP13 90 84 79 91 75 81 Arduino Jupyter Notebook

AP14 69 88 88 69 71 90 Raspberry pi Java

AP15 87 78 72 82 67 83 Raspberry pi Python

AP16 90 90 69 90 81 65 Raspberry pi Python

AP17 88 68 82 82 75 84 Raspberry pi Kotlin

AP18 69 79 90 76 81 66 Arduino Jupyter Notebook

AP19 80 88 88 73 77 69 Arduino C++

AP20 78 79 69 66 68 75 Raspberry pi Kotlin

WF1 81 81 67 93 78 79 Raspberry pi Python

WF2 85 90 81 79 88 80 Raspberry pi JavaScript

WF3 78 67 78 88 90 89 Raspberry pi C++

WF4 66 88 77 90 89 81 Raspberry pi Java

WF5 87 78 78 86 67 90 Arduino Jupyter Notebook

WF6 91 81 65 73 79 84 Raspberry pi Kotlin

WF7 89 90 90 93 88 91 Raspberry pi Jupyter Notebook

WF8 83 66 86 79 69 88 Raspberry pi C++

WF9 67 78 89 88 65 67 Raspberry pi Python

WF10 69 90 78 55 84 89 Arduino Jupyter Notebook

WF11 88 81 88 86 74 76 Raspberry pi Kotlin

WF12 91 84 76 73 87 65 Arduino Jupyter Notebook

WF13 80 81 69 87 88 78 Raspberry pi C++

WF14 78 67 89 79 79 77 Arduino Java

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

15

The data used in this research were randomly generated and used to represent 20 reusable components

each in three categories namely Home Automation components (HA), Air Pollution components (AP)

and Weather Forecast Component (WF) as shown in Table 1. Also, the non-functional attributes of

these components are expressed in terms of QMOOD model (Bansiya and Davis, 2002; Özçevik, 2021)

with the six QMOOD indices namely Reusability, Extendibility, Flexibility, Functionality,

Understandability and Effectiveness indicated. From the table, the modularity of H1 for instance is

expressed as 88% while functionality is 81%.

c) Setting the Search Parameters

To conduct a search, the required inputs must be provided to the code search engine. As indicated in

Figure 3, the reuser is interested in components for home automation system implemented on Raspberry

Pi. This expression serves as functional requirements parameter, where the multiple requirements

namely home automation system, Raspberry Pi and detect intruders are extracted by the code search

engine and used accordingly.

 Figure 3: Setting up a Search in CROPS Code Search Engine

In terms of the non-functional characteristics, the reuser is interested in the multiple criteria namely

reusability, modularity, extensibility and effectiveness given in the specified order of priority. Finally,

the filtering parameter is set to Python language to enable the system filter out components not satisfying

this criteria. The result of this search process is presented in table 4.

WF15 85 80 88 91 80 89 Raspberry pi Python

WF16 87 69 79 72 89 69 Raspberry pi Kotlin

WF17 81 80 90 78 85 82 Arduino Jupyter Notebook

WF18 79 92 88 73 78 91 Raspberry pi C++

WF19 89 71 56 88 90 79 Arduino Java

WF20 92 79 77 71 85 87 Arduino Python

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

16

RESULTS AND DISCUSSIONS

Based on the functional requirements, non-functional characteristics, filtering and sub-ranking

parameters provided by the reuser, the search result from the Code search engine is shown in Table 4.

 Figure 4: Search Results from CROPS Code Search Engine

From the list of 60 components in the repository, the search is narrowed down to 20 components in the

category of components i.e. Home Automation Components as specified by the reuser. By applying the

functional requirement “Raspberry Pi”, the list is further reduced to 9 components eliminating other that

are based on other technologies. Applying Python as a filter reduces the identified components to 7 as

indicated in Table 3. Furthermore, the impact of the sub-ranking parameter is observed in HA14 and

HA8 that have similar reusability value of 81% and their modularity values are used in sub-ranking

them. In this case, HA14 with higher modularity value of 88% is placed above HA8 which value is 69%.

Table 3: Search results based of the given Multi-objective criteria

 with Reusability as key quality criteria

C
o

m
p

o
n

e
n

t

m
o

d
u

la
r
it

y

r
e
u

sa
b

il
it

y

e
x

te
n

si
b

il
it

y

U
n

d
e
r
st

a
n

d
a

b
il

it
y

fu
n

c
ti

o
n

a
li

ty

e
ff

e
c
ti

v
e
n

es
s

te
c
h

n
o
lo

g
y

la
n

g
u

a
g

e

HA12 89 93 87 95 74 96 Raspberry pi Python

HA4 92 90 81 88 84 89 Raspberry pi Python

HA3 91 88 79 78 66 81 Raspberry pi Python

HA14 88 81 85 79 76 78 Raspberry pi Python

HA8 69 81 83 88 78 79 Raspberry pi Python

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

17

HA1 88 77 91 85 81 90 Raspberry pi Python

HA18 71 69 88 88 90 63 Raspberry pi Python

The above illustration shows that this approach is capable of narrowing down the search results to few

optimal solutions from the Pareto sets that could be selected with minimal time and effort.

The search was repeated with different variations in preferred order of the quality attributes which

showed interesting results. By varying the order of the non-functional parameters, results presented in

Tables 4 -6 were obtained, which indicate the strength of each component with respect to variable

quality scenario which could further boast the confidence of the reuser in whatever component is

eventually selected. The summary of these variations is presented in Table 7

Table 4: Search results based of the given Multi-objective criteria

 with Modularity as key quality criteria

C
o

m
p

o
n

e
n

t

M
o

d
u

la
ri

ty

r
e
u

sa
b

il
it

y

e
x

te
n

si
b

il
it

y

u
n

d
e
r
st

a
n

d
a

b
il

it
y

fu
n

c
ti

o
n

a
li

ty

E
ff

e
c
ti

v
e
n

e
ss

te
c
h

n
o
lo

g
y

la
n

g
u

a
g

e

HA4 92 90 81 88 84 89 Raspberry pi Python

HA3 91 88 79 78 66 81 Raspberry pi Python

HA12 89 93 87 95 74 96 Raspberry pi Python

HA14 88 81 85 79 76 78 Raspberry pi Python

HA1 88 77 91 85 81 90 Raspberry pi Python

HA18 71 69 88 88 90 63 Raspberry pi Python

HA8 69 81 83 88 78 79 Raspberry pi Python

Table 5: Search results based of the given Multi-objective criteria

 with Effectiveness as key quality criteria

C
o

m
p

o
n

e
n

t

m
o

d
u

la
r
it

y

r
e
u

sa
b

il
it

y

e
x

te
n

si
b

il
it

y

u
n

d
e
r
st

a
n

d
a

b
il

it
y

fu
n

c
ti

o
n

a
li

ty

E
ff

e
c
ti

v
e
n

e
ss

te
c
h

n
o
lo

g
y

la
n

g
u

a
g

e

HA12 89 93 87 95 74 96 Raspberry pi Python

HA1 88 77 91 85 81 90 Raspberry pi Python

HA4 92 90 81 88 84 89 Raspberry pi Python

HA3 91 88 79 78 66 81 Raspberry pi Python

HA8 69 81 83 88 78 79 Raspberry pi Python

HA14 88 81 85 79 76 78 Raspberry pi Python

HA18 71 69 88 88 90 63 Raspberry pi Python

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

18

Table 6: Search results based of the given Multi-objective criteria

 with Extensibility as key quality criteria

C
o

m
p

o
n

e
n

t

m
o

d
u

la
r
it

y

r
e
u

sa
b

il
it

y

e
x

te
n

si
b

il
it

y

u
n

d
e
r
st

a
n

d
a

b
il

it
y

fu
n

c
ti

o
n

a
li

ty

E
ff

e
c
ti

v
e
n

e
ss

te
c
h

n
o
lo

g
y

la
n

g
u

a
g

e

HA1 88 77 91 85 81 90 Raspberry pi Python

HA18 71 69 88 88 90 63 Raspberry pi Python

HA12 89 93 87 95 74 96 Raspberry pi Python

HA14 88 81 85 79 76 78 Raspberry pi Python

HA8 69 81 83 88 78 79 Raspberry pi Python

HA4 92 90 81 88 84 89 Raspberry pi Python

HA3 91 88 79 78 66 81 Raspberry pi Python

Table 7: Summary of Components Ranking Occurrences

Table 7 shows that, component HA12 dominated in two instances namely reusability and effectiveness,

HA4 and H1 dominated in one instance each which are modularity and extensibility respectively. Using

the above search results, HA12 is best for the reuse scenario. This clearly shows that using CROPS, time

and efforts required by the reuser to search, rank and select components for reuse in any given reuse

scenario is minimized while guaranteeing the choice of best components.

CONCLUSION

The quality of software reuse depends on the quality of reusable components selected from components

repository for reuse. The task of getting quality and suitable components based on reuse scenario is

Component
No. of occurrences by Ranks

1st 2nd 3rd

HA12
2 (reusability and

 effectiveness)
Nil 2

HA3 Nil 1 1

HA4 1 (modularity) 1 1

HA8 Nil Nil nil

HA10 Nil Nil nil

HA1 1 (extensibility) 1 nil

HA14 Nil Nil nil

HA16 Nil Nil nil

HA18 Nil 1 nil

https://bjmas.org/index.php/bjmas/index

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

19

always a difficult one especially when the number of Pareto solutions in a MOP is very large and

presented with conflicting objectives. The use of preference-based MOEAs has been of great benefits

in addressing these challenge. Unfortunately, most of these methods do not address search concerns

involving non-functional requirements (i.e. quality criteria), hence reusers’ interests in this regard are

usually not accommodated. CROPS (Components Ranking Optimization and Selection) algorithm - a

type of preference-based MOEA is designed to address this challenge. CROPS uses functional

requirements and the preferred order of non-functional requirements (i.e. quality criteria) together with

high-level objectives for filtering and sub-ranking of components to generate distinctive ranks of Pareto

sets identified in a search. Using this approach, time and efforts required by the re-user to search, rank

and select components for reuse in a given re-use scenario is minimized. Moreover, CROPS will enable

reusers to select quality components from a wide range of components thereby enhancing software

reuse.

RECOMMENDATIONS:

The following recommendations are necessary:

i. Implementation of CROPS Algorithm in code search engines is highly recommended as a means

of addressing code search challenges involving non-functional characteristics of components.

ii. A standardized method for computing the values of quality attributes beyond those supported by

QMOOD is highly recommended to cover a wide range of quality attributes that reusers may be

interested in.

REFERNCES

Arsene, K. K. I., Adama, S., Kouadio, K. and Konam, B. (2019). Proposal of Automatic Methods for

the Reuse of Software Components in a Library; International Journal of Advanced Computer

Science and Applications

https://www.semanticscholar.org/paper/Proposal-of-Automatic-Methods-for-the-Reuse-of-in-a-

Arsene-Adama/ec1add63da0af493d1bc4232c5686ef896cfcda0

Bansiya, J., Davis, C. G.: A hierarchical model for object-oriented design quality assessment. IEEE

Transactions on software engineering, 28(1): pp. 4-17 (2002)

Biswas, P. and Suganthan, P. N. (2018). Multiobjective Evolutionary Optimization;

Wiley Encyclopedia of Electrical and Electronics EngineerinDOI:10.1002/047134608X.W8380

Cai et al. (2019) Cai X, Wang P, Du L, Cui Z, Zhang W, Chen J. Multi-objective three-dimensional

DV-hop localization algorithm with NSGA-II. IEEE Sensors Journal. 2019;19(21):10003–

10015. doi: 10.1109/JSEN.2019.2927733.

Chung, L. and Cooper, K. (2004). Matching, ranking and selecting Components: A COTS-aware

requirements engineering and software architecting approach. In Proceedings of the

International Workshop on Models and Processes for the Evaluation of COTS Components at

26th International Conference on Software Engineering, (Edinburgh, Scotland, UK), pp. 41-44

Cortellessa V, Marinelli F, Potena P (2008) An optimization framework for “build-or-buy” decisions in

software architecture. Comput Oper Res 35(10):3090–3106

Dou et al. (2021) Dou J, Li J, Xia D, Zhao X. A multi-objective particle swarm optimisation for

integrated configuration design and scheduling in reconfigurable manufacturing

https://bjmas.org/index.php/bjmas/index
https://www.semanticscholar.org/paper/Proposal-of-Automatic-Methods-for-the-Reuse-of-in-a-Arsene-Adama/ec1add63da0af493d1bc4232c5686ef896cfcda0
https://www.semanticscholar.org/paper/Proposal-of-Automatic-Methods-for-the-Reuse-of-in-a-Arsene-Adama/ec1add63da0af493d1bc4232c5686ef896cfcda0
https://doi.org/10.1002/047134608X.W8380

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

20

system. International Journal of Production Research. 2021;59(13):3975–3995.

doi: 10.1080/00207543.2020.1756507.

Elahi I, Ali H, Asif M, Iqbal K, Ghadi Y, Alabdulkreem E. (2022). An evolutionary algorithm for multi-

objective optimization of freshwater consumption in textile dyeing industry. PeerJ Comput Sci.

2022 Mar 22;8:e932. doi: 10.7717/peerj-cs.932. PMID: 35494829; PMCID: PMC9044317.

Eita, Shoukry & Iba (2014) Eita M, Shoukry A, Iba H. Constrained group counseling optimization.

Artificial Life Conference Proceedings 14; Cambridge: MIT Press; 2014.

Ekanem, B. A. and Woherem, E. (2016). Legacy Components Stability Assessment and Ranking using

Software Maturity Index; International Journal of Computer Applications, 134(13), 22-30

Ekanem, B. A. and Agbele, K. K. (2021). A review of Software Component Identification Methods and

Quality Assessment Criteria; European Journal of Applied Science 9(5), 194-209

Grau, G., Carvallo, J. P., Franch, X., and Quer, C. (2004). DesCOTS: a software system for selecting

COTS components. In Euromicro Conference, 2004 Proceedings; 30th IEEE; pp. 118-126

Gupta P, Mehlawat MK, Verma S (2012) COTS selection using fuzzy interactive approach. Optim Lett

6(2):273–289

ISO (2017). ISO (2017). ISO/IEC 25010:2011 - Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE) — System and software quality

models

 https://www.iso.org/standard/35733.html

Jha, P. et al (2014). Optical component Selection based on Cohesion and Coupling for Component-

based Software System under build-or buy Scheme; Journal of Computing Science 5(2): 233-

242

Jha, S. K. and Mishra, R. K. (2016). Multi Criteria Based Retrieval Techniques For Reusable Software

Components From Component Repository; International Journal of Engineering Applied

Sciences and Technology, 2016 Vol. 1, Issue 6, ISSN No. 2455-2143, Pages 88-91 Published

Online April - May 2016 in IJEAST (http://www.ijeast.com)

Kalantari, S., Motameni, H., Akbari, E. & Rabbani, M. (2021). Optimal components selection based on

fuzzy-intra coupling density for component-based software systems under build-or-buy

scheme. Complex Intell. Syst. 7, 3111–3134 (2021). https://doi.org/10.1007/s40747-021-00449-

z

Kessel, M. and Atkinson, C. (2015). Ranking Software Components for Pragmatic Reuse, 2015

IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics, 2015

Kessel, M. and Atkinson, C. (2016). Ranking Software Components for reuse based on non-functional

properties; Information system Frontier; Springer Science, New York 18:825-853

doi 10.1007/s10796-016-9685-3

Kumar D et al (2012). Optimal component selection problem for COTS based software system under

consensus recovery block scheme: a goal programming approach. Int J Comput App

47(4):0975–1888

Kwong, C. K., Mu, L. F., Tang, J. F. and Luo, X. G. (2010). Optimization of Software components

selection for component-based software system development; Computer & Industrial

Engineering, 58(4), 618-624

https://bjmas.org/index.php/bjmas/index
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://doi.org/10.1007/s40747-021-00449-z
https://doi.org/10.1007/s40747-021-00449-z
https://ieeexplore.ieee.org/xpl/conhome/7180536/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7180536/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7180536/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7180536/proceeding

British Journal of Multidisciplinary and Advanced Studies:

Engineering and Technology, 5(2),1-21, 2024

Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

 Published by the European Centre for Research Training and Development UK

21

Özçevik, Y. (2021). "Simplified QMOOD Model Proposal Based on Correlation Analysis in Different

Client Applications," 2021 29th Signal Processing and Communications Applications

Conference (SIU), Istanbul, Turkey, 2021, pp. 1-4, doi: 10.1109/SIU53274.2021.9477964.

Rajabi & Witt (2020) Rajabi A, Witt C. Self-adjusting evolutionary algorithms for multimodal

optimization. Proceedings of the 2020 Genetic and Evolutionary Computation Conference;

2020. pp. 1314–1322.

Rizk-Allah, Hassanien & Slowik (2020) Rizk-Allah RM, Hassanien AE, Slowik A. Multi-objective

orthogonal opposition-based crow search algorithm for large-scale multi-objective

optimization. Neural Computing and Applications. 2020;32(17):13715–13746.

doi: 10.1007/s00521-020-04779-w.

Slowik A, Kwasnicka H. (2020). Evolutionary algorithms and their applications to engineering

problems. Neural Computing and Applications. 2020;32(16):12363–12379.

doi: 10.1007/s00521-020-04832-8.

Wang, Z., Zhang, Q., Li, H., Ishibuchi, H. and Jiao, L. (2017). ON the use of two reference points in

decomposition based Multi-objective evolutionary Algorithms; Swarm Evolutionary computing,

34:89-102

Yi JH, Xing LN, Wang GG, Dong J, Vasilakos AV, Alavi AH, Wang L. (2020). Behavior of crossover

operators in NSGA-III for large-scale optimization problems. Information

Sciences. 2020;509(15):470–487. doi: 10.1016/j.ins.2018.10.005.

Zhang, K., Zhang, Y. and Qiujun, H. (2018). Enhancing Comprehensive Learning Particle Swarm

Optimization with Local Optima Topology; Information Science, 471(15)

doi:10.1016/j.ins.2018.08.049

https://bjmas.org/index.php/bjmas/index
http://dx.doi.org/10.1016/j.ins.2018.08.049

