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ABSTRACT: The Fermat last theorem, defined in (2+1)-dimensional Minkowski spaces, 

is discussed and extended in natural and rational Mikowski’s spaces. Several pieces of 

computational interest are given, with many practical examples. A definition of Fermat 

vector order, Fermat surfaces, and Fermat surface radius is given. Several conjectures 

are discussed, among them the existence of a Fermat theorem in (3+1)-dimensional 

Minkowski spaces. 

KEYWORDS: Fermat’s Last Theorem, fermat surfaces, Minkowski spaces, extended 

fermat vectors, discrete probability distributions, order and radius of a fermat vector, 

lattices 

 

INTRODUCTION 

Despite the elaborate Wiles demonstration [1], Fermat’s last theorem still attracts 

researchers to this aspect of number theory. For example, recent papers on the subject [2-

4] still present simple alternative demonstrations of the theorem. Following this research 

line, one of us has published several papers [5-8] trying to find extensions of Fermat’s 

theorem.  
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These last studies mainly discuss the extension of the theorem to larger dimensions and 

present it as a heavy-computational problem. Based on the previous empirical work, a 

naïve demonstration of Fermat’s last theorem has recently been published [9]. Such a 

demonstration has been developed in a vector space framework with a Minkowski 

structure. 

All this previous experience has opened the way for the present study, which has been 

structured in two parts. The first one describes the Minkowski natural space basis, where 

the discussion of Fermat’s theorem and the extensions to higher dimensional spaces is 

also provided. In the second, many examples of N-dimensional vectors obeying a Fermat-

like rule for various powers are presented and discussed.  

A general Fermat theorem seems difficult to enunciate, except for a (3+1)-dimensional 

Minkowski space, where exhaustive computational tests have been performed [7]. One 

can conclude that the behavior of (3+1)-dimensional vectors appears similar to the 

original Fermat theorem in a (2+1)-dimensional Minkowski space. In higher-dimensional 

spaces, one can observe the existence of vectors with properties similar to the two- and 

three-dimensional ones.  

The most interesting algebraic structure corresponds to the connection of the natural 

vectors subject to a Minkowski metric with rational vectors, which also behave as Fermat 

vectors with zero Minkowski norms. Such vectors constitute a set of elements that also 

can be associated with discrete probability distributions. 

The existence of Fermat surfaces is also evidenced when the order of the powers is larger 

than 2. At the same time, spheres and hyperspheres describe the natural Fermat vectors 

of order 2. 

Therefore, this first part of the study of the Fermat theorem and its extensions has been 

organized in the following way. Vector semispaces are described first, followed by the 

possible ways to construct them via the inward product of two vectors. From here, one 

can obtain a set of vectors that behave as scalars. Whole perfect vectors are introduced 

next, and Minkowski norms are easily defined. Finally, the Fermat vectors of diverse 

dimensions are studied, starting with the (2+1) and ending in dimensions as large as 

possible. 

1. Vector Semispaces. 

An N-dimensional semispace (or orthant) defined over the set of positive rational 

numbers: 


, can be symbolized by:  NV 
.  A semispace [10-18] can be generated 

by the vectors of a vector space  NV  using the following transformation: 
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   

   
1 2 3

1 2 3

, , ,...,

     , , ,...,

N N

N N

x x x x V

x x x x V 

  

  

x

x
.          (1) 

One can extend this definition to vector spaces over the real and complex fields without 

problems other than using the corresponding field elements in the vector components and 

the redefinition of the vector x  in the case of the complex field; one can use a vector 

module, possessing modules of complex numbers as elements.  

The rational field is used here because of the semispace vector’s final computational 

construction and manipulation. 

3. An alternative construction of semispaces: inward product of two vectors. 

3.1. Definition of the inward product of two vectors. 

Any vector space can be transformed into a set with an extra structure by defining a not-

very-much-used product of two vectors, which here will be called the inward product 

[18]. However, it is well known as a product with other names like Hadamard, Schur, 

diagonal…. 

The inward product of two vectors of a vector space  NV  is easily defined as: 

     ; : 1, :N N I I IV V I N p x y       x y p x y .      (2) 

Therefore, the inward product of two vectors results in another vector belonging to the 

same space. Properties of the inward product of two vectors are those of the product of 

two scalars. Thus, a vector space with the additional definition of the inward product 

might be transformed into a set whose axiomatic structure resembles a field.  

3.2. The inward inverse of a vector. 

One needs to define an ad hoc property of the inward inverse of a vector, though, leaving 

the possible zero components null. That is, one can describe the following algorithm: 

 
         1 1 1

:

    1, : 0 0

N

N I I I I I

V

V I N x x x x x 
  

 

       

x

x
      (3) 

where the symbols  Expression  are logical Kronecker deltas [19], which take the 

values:  0,1 , according to the result of the Expression  becomes: 

https://bjmas.org/index.php/bjmas/index


British Journal of Multidisciplinary and Advanced Studies: 

Mathematics, Statistics, Quantitative and Operations Research 4(6),1-22, 2023 

Print ISSN: 2517-276X 

Online ISSN: 2517-2778 

                                                       Website:  https://bjmas.org/index.php/bjmas/index 

               Published by the European Centre for Research Training and Development UK 

4 

 

    . . , . .False True  . For example, the usual Kronecker’s delta might be written 

from this point of view as:  , 1, : IJI J N I J     . 

3.3. The inward unity vectors. 

The definition of inward inverses has to be accompanied by the definition of unity-

appropriate vectors, which correspond to the vertices taken with rational elements of the 

N -dimensional Boolean hypercubes [15]. This definition appears because vectors with 

zero elements belong to subspaces of lesser dimension than the original vector space. 

Such subspace vectors can be avoided by defining whole vectors lacking zero 

components, as developed in section 4.. 

The N -dimensional unity vector:    1,1,1,...,1N NV 1 , corresponds to the 

neutral element for the inward product of vectors in general, and for the whole vector 

kind (see next section 4.), one can write: 

   1 1

N

 
   x x x x 1 .            (4) 

3.4. The inward power of a vector. 

The inward product can be, without exception, extended to any number of vectors and, as 

such, can be the source of inward natural powers of a vector, as follows: 

 

   1 2 3
1

:

          ... , , ,...,

N

p
p p p p p

N
I

p V

x x x x


   

      

x

x x x x x
       (5) 

 

4. Whole perfect vectors. 

A (row)3 vector: 

   1 2 3, , ,..., N Nw w w w V  w            (6) 

might be called whole (lacking zero components) and perfect (whole-perfect or WP) when 

its elements fulfill the following inequalities: 

1 2 30 ,... Nw w w w    ;             (7) 

                                           
3 One uses row vectors here, considering that all the vector properties of rows are the same on the dual 

column vector spaces. The transformation of one form into another can be made by transposition. 
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that is, they are non-zero, positive, all different, and well-ordered.  

The set of whole-perfect vectors can be constructed as a subset of the semispace 

 NV 
, and symbolized by:    N NW V  .                         The WP subset: 

 NW 
, is a vector semisubspace, as it is trivial to realize that the sum of WP vectors 

is a WP vector and a homothecy of a WP vector is a WP vector: 

   

     

:

, :

N N

a b N a b N

W W

W W

   

 

      

     

w h w h

w w s w w s
       (8) 

Also, the permutations of the elements of a WP vector generate a set of !N  whole vectors. 

One can construct a basis set of  NW 
 by choosing a subset of N elements among 

these vector permutations. Thus, a WP vector’s circular permutations can be considered 

a basis set generator. 

 

5. Whole-perfect vectors as homothecies. 

In a semispace  1NV 


, one can consider any WP vector constructed as: 

   1 : ,NW r

  v v w ,           (9) 

where r  is the largest vector element: 
1Nv 
 , which can be called the radius of the WP 

vector.  

One can also suppose such a vector form as homothetic to a WP vector with the most 

significant element transformed into the unity: 

   

       

1 2 3
1

1 2 3 1

, : ; ; ;...; ;1

 , , ,... ,1 ,1

N
N

N N N

w w w w
r W r r

r r r r

u u u u Z U





 



 
     

 

     

v w v z

z u u 1

    (10) 

where the symbol:  0,1  1 , stands for the open unit interval, and by the symbol 

 NU 1  one can understand the set of N -dimensional WP vectors defined over 
1 . 

Therefore, a one-to-one correspondence occurs between the elements of both sets 
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 1NW 


 and  1NZ 


. One can, therefore, consider the set  1NW 


 as 

generated by all the rational positive homotheties of the vectors of  1NZ 


. 

 

6. Minkowski norms (of order p ) over  NV 
.  

One can define a Minkowski norm of order p  over the semispace  1NV 


 as follows: 

 1

1

:
N

p p

N p I

I

V M w r





       v v .        (11) 

If there exists a vector such that: 

  1 : 0N pV M

    f f ;           (12) 

then, the vector f  can be called an extended (or rational) Fermat vector (of order p ).  

The natural vector semispaces or lattices:  1NV  , could be supposed to be 

subsemiespaces of  1NV 

 , in this case, one can write:     1 1N NV V 

  .  

The WP natural vectors t  bearing null Minkowski norms of order p , can be called true 

(or natural) Fermat vectors (of order p ), that is, when fulfilling: 

  : 0N pV M    t t .          (13) 

In these cases, one can also write: 

 1 2 3

1 1

; ; ;...; ; :

       0

N

N N
p p p p

p I I

I I

t t t t r

M t r t r
 

 

         

t

t
        (14) 

meaning that true Fermat vectors are the elements of some Fermat surface of order p and 

radius r (see section 8.4. below).  1N  -dimensional true Fermat vectors of order 2 

correspond to natural WP vectors sitting on the surface of an N -dimensional hypersphere 

of radius r. 
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7. Alternative definition of Minkowski norms (of order p ). 

7.1. The complete sum of a vector. 

The Minkowski norms discussed and defined in the above section can also be constructed 

by providing a simple linear operator transforming any vector to a scalar. The operator, 

which can be called the complete sum of a vector, can be associated with the following 

computational algorithm: 

 
1

:
N

N I

I

V x


   x x .         (15) 

The linearity of the complete sum of a vector is easy to prove and will not be given, as 

discussed earlier [15-17]. The complete sum of a natural power p  of a vector corresponds 

to the Euclidean norm of order p of the associated vector; thus, one can write in the 

semispace  NV 
: 

     

1

:
N

pp

N p I

I

p V E x



     x x x .      (16) 

7.2. The metric vector. 

As described earlier, the Minkowski norm of a vector can be easily defined using the 

metric vector [17,18]. The metric vector for Euclidean norms in N-dimensional space 

coincides with the unity vector  1,1,1,...,1N 1 .  

7.3. The alternative expression of the Minkowski norm of a vector. 

Associated with the Minkowski norm of order p  as previously defined, the metric vector 

becomes: 

     1; 1 1,1,...,1, 1N NV     m 1 ,         (17) 

then one can write for the semispace  1NV 


: 

 

     

1

1

:

                   ;

N

p p p

p N N

p V

M x







   

   

x

x x m x
.                 (18) 

Such a rearrangement of the Minkowski norm is interesting because it is possible that the 

negative term of the definition, associated in the present paper with the Fermat vectors, 
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can be generalized to any number of negative terms and positions in the ordered vector 

components. This Minkowski spaces generalization aspect has been previously studied 

[8,11,13,17,18] and will not be repeated here. 

 

8. The unit hypersphere, discrete probability distributions, and Fermat vectors and 

surfaces. 

8.1. The unit hyperspheres 

Any vector space  NV  holds a vector subset    N NS V , which can be named 

the unit hypersphere. One might assign to the vectors of such a subset the property: 

   2 2

1

: 1 1
N

N I

I

S s


    s s ,         (19) 

in this manner, the elements of  NS  constitute the surface of an N-dimensional 

hypersphere of unit radius.  

8.2. The generators of unit hyperspheres 

As one can deduce from the equation, vectors with unit complete sum and squared 

elements generate the unit hyperspheres. 

Also, one can observe the set  NS  as containing two types of generators.  

First, considering the squared vectors: 
     2 2

NS s 1 , as they have a unit complete 

sum, they can also be taken as the vector structure of all the discrete probability 

distributions of a given dimension, just realizing that one can write: 

       

   

2 2

2

1

1

1, : 1 1

N N

N

I I I

I

N N

S V

I N s p p

P V





 

      

      

  



s s s p

p

p

1

1

       (20) 

Then, the subset of vectors  NP 1  contains all the N -dimensional discrete probability 

distributions, and one can consider it equivalent to the subset holding all the squared 

vectors defining the hypersphere surface:  
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     2

N NP S 1 1 .            (21) 

8.3. Squared probability vectors. 

Also, one can use the fact that the property associated to the squared-probability vectors, 

which can be written as: 

 

   
        

1

2 2

1 2 2

;1

;1 ;1 0

N N

N

P V

V M M

 







   

    

p p

s s f

1

      (22) 

Such expression shows that extended Fermat vectors and discrete probability distributions 

are related. True Fermat vectors are thus related to a subset of the probability distributions, 

with all probability terms possessing a well-defined rational structure. 

The second generators correspond to the elements of the hypersphere surface set  NS

. They can be used via homotheties as generators of the inner and outer sphere vectors, 

the homothetic parameter being 1   in case of generating inner sphere vectors and 

1   for the outer sphere ones. 

8.4. Fermat surfaces 

Therefore, these self-evident definitions and hypersphere characteristics are of interest in 

the context of generalized Fermat vectors. In the next lines, one will develop the 

framework of the characterization of Fermat surfaces, which include surfaces as N-

dimensional hyperspheres as a particular case. 

To properly define a Fermat surface of unit radius, one must consider a set of vectors 

associated with some vector space, defined over the real or the rational (for computational 

and practical purposes) field. Therefore, it is necessary to specify the dimension of such 

a chosen Minkowski vector space, let us say (N+1). A second parameter needed 

corresponds to the order of the surface, accepting p as the order value.  

Then, one can define an N-dimensional Fermat surface of order p and radius 1,r   as a 

set of (N+1)-dimensional vectors with p-th order unit norm. Therefore  NS , the N-

dimensional hyperspheres of unit radius can be considered N-dimensional Fermat 

surfaces of order 2 and radius 1r  . 

Thus, any vector space  1NV   can hold a vector subset      1
,p

N N
F V


  which 

can be defined in the following form: 
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     1 2 3

1

, , ,..., ,1 1 0
N

pp

N N p I

I

f f f f F M f


      f f ,    (23) 

the absolute value appears here to consider possible negative vector component values.  

Even if one defines the vector space over the complex field, the symbol can be accepted 

as a module of the vector elements. Then, with the definition of the equation (23), one 

can consider that:    2

N NF S . 

Of course, homotheties of the vectors belonging to a Fermat surface define surfaces 

within the same dimensions but with the radius transformed into the homothecy 

parameter.  

True Fermat vectors whose elements and radius correspond to natural numbers might 

exist within a homothetic Fermat surface. Still, one cannot ensure that this situation 

appears as general property. 

With the definition of Fermat surfaces, one can be sure that there are no natural Fermat 

vectors in Fermat surfaces, such as  22: pp F  due to Fermat’s last theorem and 

 33: pp F  as a conjecture obtained empirically [7, 8].  

One must be aware that the sets of vectors associated with constructing Fermat surfaces, 

when inward powered to the order p of the surface, are related to discrete probability 

distributions of the adequate dimension, as one has discussed earlier in section 8.3. 

Another question is the lack of computed natural Fermat vectors associated with Fermat 

surfaces when the dimension, the order, or both tend to be large numbers. That is the 

existence of such surfaces when dimension N and order p tend to be infinite. The problem 

is complex enough to leave it pending for further research. 

9. True Fermat vectors of second-order. 

This section might describe trivial extensions of Fermat’s last theorem, keeping the order 

2 as in the theorem but analyzing the possibility of Natural Fermat vectors of larger 

dimensions than (2+1). 

In this case and the following ones, all the search of true Fermat vectors has been 

performed, avoiding the natural unit 1 acting as an element of the generated vectors. 

9.1. Empirical evidence of true Fermat  1N  -dimensional vectors of second-order. 

There is empirical evidence that true Fermat vectors of order 2 exist up to large values of 

the dimension of natural spaces. An example is the Leech lattice [20-22], and another 
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corresponds to the published computational results [6-8] dealing with natural Fermat 

vectors up to dimensions 600N  . 

Another numerical example4 can illustrate this ubiquity of Fermat vectors of order 2 in 

any  1N  -dimensional Minkowski space.  

It has been obtained by randomly searching the vector components in the natural number 

range  102,2 1  and within a natural space dimension (52+1). The following vector 

corresponds to one arbitrarily chosen among the set of computed elements:  

[15, 43, 53, 111, 113, 122, 130, 135, 141, 157, 160, 174, 186, 257, 261, 264, 267, 269, 

293, 357, 360, 438, 497, 537, 556, 560, 569, 576, 588, 614, 615, 639, 658, 670, 697, 726, 

739, 751, 752, 785, 810, 812, 823, 836, 846, 859, 889, 926, 931, 978, 1003, 1023] 

 4275r  . 

The order 2 property is easy to demonstrate for the above vector, just writing a natural 

WP vector in such terms as previously done and assigning the last element to a factual 

radius of a hypersphere.  

Thus, one can write the second-order Minkowski norm of  1N  -dimensional true 

Fermat vectors as: 

2 2 2 2

2

1 1

0
N N

I I

I I

M t r t r
 

         t ,         (24) 

after a trivial rearrangement, they yield the equation of the natural points sitting on the 

surface of an N -dimensional hypersphere of radius r .  

Then true Fermat  1N  -dimensional vectors of order 2 are particular points on the 

surface of a hypersphere of radius r , described in a vector space  1 ,NV   or a more 

restricted case in the semispace  1NV 

 .  

9.2. A conjecture on true Fermat vectors of order 2. 

As previously discussed, such a situation indicates one can enunciate a conjecture about: 

“the existence of an infinite number of true Fermat vectors of order 2 in any dimension”.  

9.3. (2+1)-dimensional true Fermat vectors of order 2. 

                                           
4 This and other results in this paper have been obtained under a dedicated Python 

program, available to the author on demand. 
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The multidimensional true Fermat vectors of order 2 generalize the well-known 

Pythagorean triples, which, according to the present definitions and algebraic 

construction, correspond to true Fermat (2+1)-dimensional vectors of order 2. Besides, 

they are directly connected to Fermat’s last theorem. 

In this case, one has empirically shown that an extension of the last Fermat theorem 

applies [5,6]. In this three-dimensional Minkowski environment, there are no Fermat 

vectors of any order different than the trivial first and second-order ones [9].  

This property above corresponds to a partial demonstration of Fermat’s last theorem. An 

alternative demonstration to the one proposed by Wiles needs to prove that: 

     

 

2 1
, ,

2 : 0 0p p p

p

x y r V

p p M x y r


  

        

v

v
.      (25) 

Such property has been demonstrated for the true Fermat vectors in this Minkowski space 

environment [9], that is: 

       

 

2 2 2

22 1
, , 0 0

2: 0 0p p p

p

a b r V M a b r

p p M a b r


        

        

f f

f
     (26) 

The first part of the equation (26) becomes the same as writing the two-dimensional 

expression of the equation (10), as one can describe, in this case, the following expression: 

     
2 2

2 2 2

2 1
, , 1

a b
a b r V a b r

r r


   
           

   
f      (27) 

and the final equation (27) is equivalent to the sine and cosine relationship: 

    2 2sin cos 1
a b

S C S C
r r

         ,       (28) 

therefore, for appropriate angle values, one can also write: 

 2 : 1 0,p p

pp p S C M       f        (29) 

thus, the equation (29) follows Fermat’s last theorem, as there will be angle values for 

which a correct homothecy produces a true Fermat vector.   

One must note that extended and true Fermat squared vectors might easily correspond to 

the collection of rational two-dimensional probability distributions, using the findings of 

previous section 8.. 
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9.4. Higher order Minkowski norms. 

There is another problem when the natural (2+1)-dimensional vectors for which equalities 

like the ones in the equation (27) are not fulfilled. 

In case they are, though, one can try a reduction to the absurd, writing: 

     2 1
2 : 0

0 1

q

q q

q q q

q q V M

a b
a b r

r r

a b
x y

r r



 

      

   
         

   

     

v v

       (30) 

That is, it will appear that a relationship similar to the true Fermat vectors will appear 

with a power value other than 2.  

It is a matter of obtaining a contradiction from this relationship, as shown in the equation 

(30). The relationship will mean that a Fermat’s surface of order q  can contain at least 

one rational point: a natural homothetic parameter transforms into a true Fermat vector. 

The point  , ,1x yp  might be seen as written in cartesian coordinates. Still, as such, 

it can also be written in terms of the sine and cosine of an appropriate angle and radius 

unit, so at the same time as the discussed true Fermat vectors, one can write an equivalent 

vector in terms of sine and cosine, or:  , ,1S Cv . Then, the vector p  can be written 

in terms of the circular coordinates as:  

      , ,1 : 0 1
q qq q q q

qS C M S C    v v ,       (31) 

but if 2q  this is not possible, one enters into a contradiction. 

Therefore, it seems that there cannot be Fermat vectors other than order 2 in natural 

Minkowski (2+1)-dimensional spaces. 

 

10. (3+1)-dimensional true Fermat vectors of arbitrary orders. 

Empirical evidence based on exhaustive computational results [7] suggests that (3+1)-

dimensional true Fermat vectors of order 3 exist likewise to those in the lower (2+1) 

dimension. Similarly, there is no collected computational evidence of true Fermat vectors 

of order larger than 3 in (3+1)-dimensional lattices [7,8]. 
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However, true Fermat  1N  -dimensional vectors of order 3 exist parallelly as the 

order 2 vectors exist. In this sense, a conjecture similar to the last Fermat theorem can be 

enunciated for order 3 Fermat vectors. That is: “an infinite number of true Fermat vectors 

of order 3 exists in any dimension  3 1  ” 

10.1. Fermat vectors of order 3 within large dimensional natural semispaces. 

As an example of this, one can write the following vector, obtained in a similar way that 

in the second-order case, which is a third-order true Fermat vector in a (43+1)-

dimensional natural Minkowski semispace: 

[30, 32, 112, 120, 132, 158, 207, 213, 220, 233, 266, 312, 374, 375, 387, 397, 415, 442, 

472, 517, 549, 573, 580, 584, 588, 607, 610, 632, 644, 650, 664, 670, 676, 707, 741, 774, 

815, 828, 830, 878, 889, 891, 951]  2131r    

Another third-order Fermat vector example follows: 

[18, 21, 49, 55, 114, 119, 123, 147, 173, 189, 199, 221, 225, 232, 248, 255]    456r 

, 

this time extracted from a (16+1)-dimensional natural Minkowski semispace. Also, such 

large dimensions permit the existence of large order vectors, too, like in this example of 

a true Fermat vector in the dimension (16+1) but order 5: 

[12, 26, 28, 42, 51, 53, 71, 73, 79, 84, 95, 99, 112, 115, 121, 124]  165r  .   

10.2. A conjecture of extended Fermat theorem of order 3 in (3+1)-dimensional natural 

semispaces.  

For (3+1)-dimensional natural vectors, Fermat vectors of order greater than 3 seem that 

don’t exist, at least computationally. Meanwhile, for (N+1)-dimensional natural vectors, 

Fermat vectors of order 3 seem to exist without dimension limit. 

Then, one can write the following expression: 

       

 

3 3 3 3

33 1
, , , 0 0

3: 0 0p p p

p

a b c r V M a b c r

p p M a b r


         

        

f f

f
 

as a way to describe a Fermat’s last theorem-like conjecture within three-dimensional 

Minkowski spaces and third-order norms.  

That is, one can conjecture that: “in (3+1)-dimensional natural Minkowski semispaces, 

there exist true Fermat vectors of the third order, but no higher-order ones”. 
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10.3. True Fermat vectors of order 3 in higher dimensional spaces. 

Also, one can conjecture that third-order true Fermat vectors exist in all (N+1)-

dimensional spaces. 

For example, a random search, similar to the one used in second-order Fermat vectors, 

provides many true (6+1)-dimensional Fermat vectors of the third order. Some arbitrarily 

chosen three specimens are: 

[80, 119, 121, 144, 160, 166] 250r   

[14, 75, 124, 145, 197, 247]  304r   

[3, 7, 153, 177, 212, 229]   313r    

Some true Fermat vectors can possess the same radius, like the following two vectors 

obtained with a radius  328r  . The meaning of this corresponds to considering that 

one has found two natural Fermat vectors lying on the corresponding Fermat surface of 

order 3 and radius 328: 

[44, 105, 127, 202, 222, 234]   

[105, 115, 179, 185, 208, 226]. 

More examples of existing natural points in Fermat surfaces will be provided below.   

 

11. (4+1)-dimensional and higher-dimensional true Fermat vectors of arbitrary 

orders. 

Empirical evidence points to true Fermat vectors of order 4 and 5 in (4+1)- and (5+1)-

dimensional natural Minkowski semispaces. In (4+1)-dimensional natural semispaces, 

true Fermat vectors of order 4 are present with some scarcity, and occasionally it has even 

been found some order 5 vectors. 

11.1. (4+1)-dimensional true Fermat vectors. 

There follows a sample of true Fermat vectors of various orders, associated with a 

(4+1)-dimensional natural Minkowski semispace: 

Order 3: [10, 15, 40, 65]  70r                

     [71, 73, 228, 234]   294r   
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Order 4: [60, 240, 544, 630]  706r   

Order 5: [27, 84, 110, 133]  144r   

    [54, 168, 220, 266]   289r  . 

Curiously enough, (4+1)-dimensional true Fermat vectors can be of orders 2, 3, 4, and 5. 

The 4-order vectors are very scarce, and surprisingly, also not so scarce 5-order vectors 

are present.  

Such a characteristic impedes allowing the generalization of the Fermat last theorem to 

any dimension.  

No vectors of higher orders have been computed, but this is no real proof of their lack of 

existence.  

Perhaps they are very scarce and thus hard to generate among many natural number 

combinations. 

However, in larger (N+1) dimensions, the collection of true Fermat vectors of orders 

larger than N are either scarce or nonexistent, as they have not been computationally 

found among extensive random searches.  

So, perhaps the (4+1)-dimensional case is connected to a very peculiar Fermat surface 

possessing properties different from other dimensions. But this cannot even be 

conjectured. 

11.2. (5+1)-dimensional true Fermat vectors 

The following examples of different (5+1)-dimensional vectors illustrate the results one 

gets in this kind of dimension. Order 2 vectors are quite numerous and not shown, but 

one can describe the particular higher-order ones as follows:    

Order 3: [8, 40, 51, 66, 77]   98r       

               [28, 78, 94, 98, 117]  157r    

Order 4: [13, 16, 22, 38, 84]  85r   

              [13, 98, 104, 212, 228]  265r   

              [59, 78, 132, 174, 246]  

Order 5: [21, 23, 37, 79, 84]  94r   . 
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An interesting feature concerning order 4 has to be noted. There are three Fermat vectors 

written, one with a radius of 85 and two with the same radius of 265, meaning they 

correspond to two different points of the same Fermat surface  4

5F 
, embedded in a 

Minkowski semispace of dimension (5+1), order 4, and radius 265.  

More examples of Fermat surfaces with many natural points found are given in the 

following sections. 

Orders larger than 5 have not been found in this dimension, so the extended 5-order 

originated in the (4+1)-dimensional case, which now in dimension (5+1) could be 

associated with vectors of order 6, seems nonexistent or quite difficult to find. 

11.3. Large dimensions 

By large dimensions, one refers to dimensions larger than (5+1). Some examples follow. 

11.3.1. Dimension (6+1) 

Some examples of order 3 have been shown before in section 10.3. Here, apart from more 

vectors, also order 4 and 5 are presented: 

 Order 3: [30, 39, 188, 207, 208, 231]  333r   

      [26, 97, 138, 161, 169, 242]  299r   

      [57, 77, 85, 103, 209, 248] 

 Order 4: [16, 64, 156, 157, 212, 234]   281r   

Order 5: [6, 17, 60, 64, 73, 89]  99r     

In order 3, there are two vectors with the same radius of 299. Both are natural points of 

the same Fermat surface of dimension (6+1) and order 3, like the ones in section 10.3, 

but corresponding to a different radius. Several examples of this behavior will be provided 

later on.  

A remark on order 4 and this dimension corresponds to the apparent scarcity of Fermat 

vectors of such an order. For some reason to be elucidated later on, if possible, dimension 

(4+1) and order 4 present some anomalous properties. 

11.3.2. Dimension (7+1) 

In this dimension, one has found the following particular examples extracted from a large 

list of results: 
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Order 3: [11, 39, 51, 61, 97, 104, 125]  164r      

Order 4: [17, 28, 44, 68, 82, 90, 98]  123r    

Order 5: [5, 17, 103, 171, 180, 224, 239]  279r  .  

Higher orders are quite difficult to find. Such a characteristic is also present in dimensions 

(8+1) and (9+1). 

11.3.3. Natural points in a Fermat surface of dimension (7+1) 

Within order 3, one can even choose five true Fermat vectors of dimension (7+1) with the 

same radius 42r  , which evidences the existence of Fermat surfaces possessing 

natural points in this case: 

[4, 17, 19, 21, 23, 24, 30]    

[5, 8, 19, 21, 22, 27, 30]    

[9, 14, 15, 20, 24, 25, 31]    

[3, 12, 15, 21, 25, 27, 29]    

[3, 4, 18, 20, 24, 28, 29]    

11.3.4. Dimension (8+1) 

Order 3: [27, 72, 78, 84, 93, 96, 117, 126]  189r     

Order 4: [46, 68, 80, 106, 204, 218, 230, 241]  319r    

Order 5: [27, 31, 43, 50, 55, 85, 114, 127]  142r    

11.3.5. Dimension (9+1) 

Order 3: [4, 5, 7, 13, 14, 18, 23, 24, 26]  38r    

Order 4: [3, 6, 8, 10, 16, 50, 90, 114, 126]  149r    

Order 5: [3, 23, 25, 31, 43, 48, 51, 52, 76]  82r   

11.3.6. Natural points in a Fermat surface of dimension (9+1). 
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Within order 4, one can even choose 11 true Fermat vectors of dimension (9+1) with the 

same radius  149r  , which evidences the existence of Fermat surfaces of such an 

order possessing natural points: 

[3, 6, 8, 10, 16, 50, 90, 114, 126] 

[4, 5, 58, 60, 70, 86, 88, 108, 118]    

[4, 32, 52, 58, 70, 86, 90, 100, 123]    

[4, 16, 32, 40, 66, 68, 80, 119, 120]    

[7, 16, 20, 52, 62, 78, 90, 110, 122]    

[8, 26, 40, 60, 76, 88, 95, 102, 118]    

[10, 14, 18, 52, 54, 86, 94, 100, 125] 

[20, 22, 30, 34, 52, 59, 60, 122, 124 

[24, 50, 55, 56, 76, 80, 92, 96, 124]    

[30, 34, 50, 67, 88, 92, 94, 102, 110]    

[48, 52, 60, 64, 74, 82, 95, 100, 118]     

Under the same search arrangement, several Fermat vector families with the same radius 

appear in the same list of dimension (9+1) and order 4. They are not printed to avoid a 

large list of numerical items. 

Such a repeated behavior, similar to the one shown in section 11.3.3, permits us to 

consider the existence of Fermat surfaces containing natural Fermat vectors with the same 

Fermat surface radius. 

11.3.7. Dimension (10+1) 

This already large dimension is not an exception to the behavior of the previous ones. 

One can show the following obtained vectors:  

Order 3: [26, 55, 67, 76, 83, 95, 97, 110, 143, 157]   225r    

     [58, 96, 100, 114, 116, 155, 180, 207, 214, 225]  355r   

     [33, 37, 98, 119, 139, 151, 161, 180, 226, 243]  

 Order 4: [10, 48, 57, 58, 80, 82, 102, 190, 212, 220] 277r   

Order 5: [18, 27, 38, 59, 87, 94, 96, 99, 106, 126]  150r     
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In such a dimension for order 3, two Fermat vectors obtained with a radius of 355 are 

presented, once again proving that Fermat surfaces of such higher dimensions possess 

natural points. 

The order 4 vectors are again very scarce, perhaps pointing to the anomalies related to the 

number 4, both in dimension and order. 

11.4. Discussion on the previous results 

With the results shown in sections 9., 10., and 11., one can easily see evidence of the 

existence of true Fermat vectors in any dimension from (2+1) up to an indefinite (N+1) 

one.  

Vectors of higher orders are difficult to obtain, possibly due to the scarcity of the large 

natural numbers involved or simply to the nonexistence of natural Fermat surfaces of 

higher orders.  

Nevertheless, the presence of natural Fermat vectors in highly dimensional Minkowski 

spaces seems sufficient to keep the search for their properties and existence alive. 

 

 

12. Conclusions 

This discussion has presented Fermat’s last theorem as the starting point of many research 

threads within an original general vectorial framework. The main features revealed in the 

present results involve the following observed items: 

I. The theory of natural Fermat vectors can be well-described within natural 

Minkowski spaces. 

II. As a generalization of hyperspheres, one can define Fermat surfaces of any 

dimension and order that might contain natural Fermat vectors as points on 

such surfaces. 

III. The existence of general true Fermat vectors of order 2 lying on hyperspheres 

of arbitrary dimension. 

IV. True Fermat vectors of order 3 behavior provide the possible proposal of a 

theorem similar to the original Fermat’s last theorem, but in (3+1)-

dimensional Minkowski spaces, as well as of the existence of third-order 

Fermat surfaces in any dimension. 

V. The anomalous properties of (4+1)-dimensional natural Fermat vectors with 

order 5 lead to a further impossible generalization of the Fermat theorem to 

any dimension and order larger than 3. 

VI. Regarding computational difficulty, vector scarcity appears in any dimension 

of Fermat vector orders higher than 6. 
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VII. The computational evidence of several natural Fermat vectors of the same 

dimension, bearing the same radius, indicates the existence of natural vector 

points in Fermat surfaces. 

These seven points suggest that research on true Fermat vectors and surfaces of any 

dimension and order could be interesting enough to be continued. 
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