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Abstract: The solution gas-oil ratio (Rs) is a vital parameter in pressure-volume-temperature
(PVT) analysis and reservoir engineering, with its accurate estimation being critical during
reservoir depletion. While laboratory-based fluid sampling offers precision, it is often capital-
intensive and logistically demanding. Consequently, empirical correlations have been developed
to estimate Rs; however, these correlations are frequently region-specific and fail to generalize
across diverse reservoir conditions, leading to significant prediction errors. This study aimed to
optimize existing Rs correlations—specifically the Glaso (1980) and Standing (1947) models—
using the Ant Colony Optimization (ACO) algorithm to enhance prediction accuracy for the Volve
field. Data from the Volve production dataset underwent extensive cleaning to remove irrelevant
features, missing entries, and anomalous zero values, ensuring reliability for modeling. The ACO
algorithm was then applied to calibrate the parameters of the selected correlations, with
optimization assessed using statistical metrics such as Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and the Correlation Coefficient (R). Results showed that the optimized
Glaso correlation achieved superior performance, yielding a high correlation coefficient (0.9993)
and a significant reduction in average relative error (30.22%), outperforming its original and the
Standing model in predictive accuracy. Comparative analysis against experimental data and
traditional models confirmed the robustness and adaptability of the ACO-enhanced approach.
Despite challenges such as data dependency, parameter sensitivity, and risk of overfitting, the
ACO algorithm demonstrated strong potential for improving Rs estimation across complex
reservoir systems. The findings underscore the necessity of optimizing empirical models before
their field application and affirm the value of bio-inspired algorithms in petroleum reservoir
analysis.

Keywords: PVT correlation, ant colony optimization, solution gas-oil ratio, glaso and standing
models, reservoir fluid characterization.
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INTRODUCTION

The accurate characterization of reservoir fluid properties is a fundamental aspect of petroleum
engineering, underpinning critical activities such as reserve estimation, production forecasting,
and the design of surface and subsurface facilities. Among these properties, the Solution Gas-Oil
Ratio (Rs) is particularly significant, especially within the framework of pressure-volume-
temperature (PVT) analysis. Rs reflects the amount of gas dissolved in oil under reservoir
conditions and varies as reservoir pressure depletes, thereby influencing reservoir performance
projections and production strategies (Hillary and Okotie, 2016). According to Okotie et al. (2017),
in order to estimate the PVT properties of a reservoir fluid, the fluid is typically sampled and
brought to a laboratory for experimental analysis. In this laboratory, properties like relative
volume, vapor compressibility (z) factor, and liquid drop out are determined, as well as saturation
pressure (Dew point) at reservoir temperature and constant composition expansion test for black
oil.

PVT analysis serves as a comprehensive approach to understanding the thermodynamic behavior
of hydrocarbons in subsurface conditions. This includes laboratory determination of properties
such as gas compressibility (Z-factor), formation volume factor, gas and liquid viscosities, and
saturation pressures. Tests like differential liberation and constant volume depletion are employed
for black oil and compositional fluids, respectively. However, despite their accuracy, these
laboratory procedures are time-consuming, cost-intensive, and sometimes impractical—
particularly during the early life of a reservoir or in data-scarce environments.

To bridge this gap, researchers have developed various empirical correlations for estimating PVT
properties, including Rs. These correlations are generally derived from region-specific datasets
and are often limited in their generalizability due to differences in reservoir conditions such as
bubble point pressure, fluid gravity, and oil density. Consequently, the use of these generalized
correlations may introduce significant estimation errors when applied outside their intended
contexts. Obtaining accurate measurements of PVT data can be challenging or economically
unfeasible in the early stages of a well, according to Ikiensikimama and Egbe (2006). PVT analysis
can be used to ascertain the properties of fluid samples if they are accessible, although samples are
frequently tainted and PVT analysis is typically limited to reservoir temperatures. Furthermore,
according to Ikiensikimama (2008), exact and accurate estimates of the reservoir fluid
characteristics are only available when designing the optimal depletion techniques and estimating
reserves.

Given the economic constraints and data limitations associated with laboratory testing, optimizing
these empirical correlations becomes crucial. Optimization techniques, particularly nature-inspired
metaheuristic algorithms, have emerged as powerful tools for improving the accuracy of these
predictive models. Among these, the Ant Colony Optimization (ACO) algorithm has shown
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promise due to its ability to handle complex, nonlinear search spaces with adaptive exploration
and exploitation mechanisms.

This study, therefore, aims to apply the Ant Colony Optimization algorithm to minimize the
estimation error associated with existing solution gas-oil ratio correlations. By enhancing the
accuracy of Rs predictions, this approach offers a more reliable and cost-effective alternative to
laboratory analyses, thereby supporting better decision-making in reservoir management and
production planning.

METHODOLOGY

Data Cleaning Process for the Volve Dataset

Data cleaning is an essential step in preparing raw data for analysis, ensuring the dataset is
consistent, accurate, and suitable for modeling. In this reseaarch, data cleaning was performed on
the VVolve production dataset to prepare it for analysis and further exploration. Below is a detailed
summary of the steps taken during the data cleaning process:

Removing Irrelevant Columns

The columns BORE_WI_VOL and AVG_CHOKE_UOM, which were deemed irrelevant for the
analysis was dropped, reducing the dataset's dimensionality and improving efficiency for
modeling. The dataset was now streamlined, ready for focused analysis with only the most relevant
information.

Handling Missing Values

The missing values (NaN entries) in the dataset were identified and addressed by dropping rows
containing NaN values to ensure data integrity. After handling missing values, the dataset's shape
reduced to (7504, 16), indicating the removal of rows with missing values.

Handling Zero Values

Action: Zero values were reviewed and removed from critical columns, especially those related to
productionvolumes such as on_stream_hrs, avg_downhole_pressure, avg_downhole_temperature,
bore_oil_vol, and bore_gas_vol. Zero entries might represent missing or erroneous data, such as
equipment downtime or non-applicable values, and could skew analysis.The zero values using bar
plots was visualized to understand their distribution across columns and identify potential data
gaps. Columns like BORE_OIL_VOL and BORE_GAS_VOL were found to have a substantial
number of zero values, which likely did not reflect actual production data.

Rows with zero values were removed in critical columns to ensure that the analysis was based on
valid and reliable data (Figure 1).
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Figure 1 Visual of cofumns with zero values coumns

The distribution of zero values was plotted to highlight the gaps across columns such as
ON_STREAM_HRS (570 zero values), AVG_DOWNHOLE_PRESSURE (2152 zero values),
and BORE_OIL_VOL (576 zero values).

After removing rows with zero values, the dataset's size was rechecked, and relevant visualizations
were made to show the remaining data after cleaning.
Our key columns without zero vaIues are chart is below (Figure 2).
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Figure 2 Visual of columns with zero values in details
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Calculating Gas-Oil Ratio (GOR) for Volve dataset
A new column, Calculated_GOR, which was calculated by dividing the volume of gas produced
(BORE_GAS_VOL) by the volume of oil produced (BORE_OIL_VOL) was introduced. The Gas-
Oil Ratio (GOR) is an important indicator in the oil and gas industry that reflects the amount of
gas produced per barrel of oil.
GOR = Vg Q)

Vo
This calculation allowed for better insight into the relationship between gas and oil production
across various wells and facilitated downstream analysis.

Data Type Conversion

The relevant columns was converted to appropriate data types for better performance and accuracy.
For instance, the Date of Production was converted to datetime64[ns] to facilitate time-series
analysis and changed certain columns, such as Wellbore name, FLOW_KIND, and WELL_TYPE,
to string types for better consistency.

New Data Types:

Date of Production: datetime64[ns]
Wellbore name: string
ON_STREAM_HRS: float64
AVG_DOWNHOLE_PRESSURE: float64
BORE_OIL_VOL: float64

Other columns were similarly converted to suitable data types to ensure optimal handling during
analysis.

Removing Duplicate Records

Any duplicate rows was identified and removed to avoid redundancy and ensure that the dataset
contains only unique records for analysis. The dataset was now free of duplicates, providing a
cleaner, more accurate base for further modeling and analysis.

Tools and Techniques Usedwere

Pandas: For data manipulation and cleaning.

Matplotlib and Seaborn: For visualizing zero values and other relevant distributions.
NumPy: For performing numerical operations and calculations, such as the GOR computation.

Step-by-Step Process ACO
1. Glaso Correlation Function: The glaso_correlation function calculates the estimated GOR based
on a set of input parameters. It uses a formula that involves pressure (Pb), temperature (Tb), gas
gravity (gamma_g), API gravity (API), and seven optimization coefficients (alpha_1 to alpha_7).
Input Variables:

» PDb: Pressure (in psi)
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» Thb: Temperature (in Rankine)

» gamma_g: Gas gravity (dimensionless)

> API: API gravity of the oil (dimensionless)

> alpha_1 to alpha_7: Coefficients to be optimized
Output:

» Estimated GOR (in scf/stb)

2. Objective Function for Optimization: The objective function computes the total error between
the actual GOR values (GOR_data) and the predicted GOR values generated by
the glaso_correlation function. The goal of optimization is to minimize this error.

Input Variables:

Pb_data: Array of pressure values (psi)

Th_data: Array of temperature values (Rankine)

GOR_data: Actual observed GOR values (scf/stb)

gamma_g: Gas gravity

API: API oil gravity

alpha_1 to alpha_7: Coefficients to optimize

YVVVYVYYYVY

Output:
» Total error between predicted and actual GOR values

3. Ant Colony Optimization (ACO) Algorithm: The ACO algorithm (Figure 3) is employed to
optimize the coefficients (alpha_1 to alpha_7). It simulates the behavior of ants searching for the
best path, where the "path” corresponds to the set of optimal coefficients.

Input Variables:

Pb_data, Th_data, GOR_data: Data for optimization

gamma_g, API: Constants used in the Glaso model

n_ants: Number of ants (search agents)

n_iterations: Number of iterations for the optimization process

alpha, beta, rho, Q: ACO parameters controlling pheromone influence, exploration,
evaporation, and reward

YVYVYYVYV

Output:

» The optimized coefficients (alpha_1 to alpha_7)

» The best error (measure of how well the optimized model fits the data)
4. Optimization Results: After running the ACO algorithm (Figure 3), the coefficients that
minimize the error between predicted and actual GOR values are obtained. These coefficients are
used to calculate the final optimized GOR values for the given data.

Optimized Coefficients:
» alpha_1 to alpha_7: The optimized coefficients found by ACO

Optimized GOR:
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» GOR values calculated using the glaso_correlation function with the optimized
coefficients.

Variables Overview:

Pb_data: Array of pressure values (input to the model)
Th_data: Array of temperature values (input to the model)
GOR_data: Array of actual GOR values (used for comparison)
gamma_g: Gas gravity (constant)

API: API gravity of the oil (constant)

alpha_1 to alpha_7: Coefficients that are optimized using ACO

YVVVVVYY
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Theoretical Concept of The Ant Colony Optimization Algorithm
Step 1. Initialization
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> Define the Problem: Represent the problem as a graph with nodes and edges, where ants
will construct solutions.
> Pheromone Initialization: Initialize pheromone levels on edges with a small constant
value.
> Set Parameters: Define algorithm parameters, such as the number of ants, pheromone
evaporation rate, pheromone influence (), heuristic influence (), and stopping criteria
such as number of iterations or convergence
Ant Solution Construction
For each ant in the colony:
» Starting Point: Place the ant on a randomly selected node.
e Probability Calculation: At each node, calculate the probability of moving to the
next node based on:

P = (Ti)% * (m:))F ()

Zkeallowed(‘ik)a - (’Iik)B

e 1;;: Pheromone level on edge ij

e 17;;: Heuristic information (e.g., inverse of distance or cost).

e « and B: Parameters controlling the influence of pheromone and heuristic

information.
» Transition: Move the ant to the next node based on the calculated probabilities.
» Solution Construction: Repeat the process until the ant constructs a complete solution
(e.g., visiting all nodes in a traveling salesperson problem).

Solution Evaluation
> Assess Quality: Evaluate the quality (fitness) of each ant's solution based on the objective

function

Pheromone Update
> Evaporation: Reduce the pheromone levels on all edges to simulate natural pheromone

decay:
T <« (1-p)* 1y
where: p is the evaporation rate (0 < p <1)
» Deposit Pheromone: Reinforce pheromone levels on edges used by the ants based on
solution quality
Tij < Tij + Danes A Tjj
Where A 7;; = % (pheromone updated
Q is a constant and L is the length of the ant’s solution

Iteration and Convergence
> Steps 2 — 4 is repeated for a specified number of iterations or until convergence criteria

are met.
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Step 6. Output the Best Solution
» Stop the algorithm once the algorithm, return the best solution found and the
corresponding objective function value.

How the ACO Algorithm WorksVolvo Data: We start by inputting the dataset, which
includes various well parameters such as AVG_Downhole_Pressure,
AVG_Downhole_Temperature, AVG_Annulus_Press, AVG_Choke _Size P, And
Calculated GOR

Parameters

num_ants: The number of ants (agents) that will search for solutions in parallel. This parameter
is set to 50 by default.

num_iterations: The number of iterations the algorithm will run. The default is set to 5000.
decay: The decay factor for pheromone trails, which is used to decrease the influence of older
solutions over time. The default decay is 0.

alphand beta: Control the influence of pheromone strength (alpha) and distance between points
(beta) in the path selection.

Input Data and Target VariablesThe PVT data (your Differential Liberation Test data) (See
table 1) consists of parameters such as: Bubble Point Pressure; APl Gravity; Gas Gravity;
Reservoir Temperature

Actual GOR (the actual value of GOR from lab tests)
These input variables are used by the algorithm to determine the best possible combination of
factors that influence the GOR

Generation of Objective Functions
The cost or objective functions are developed for the Glaso (1980) and the Standing (1947)
solution gas-oil ratio correlations.

For the Glaso (1980) correlation:
AP10.989

Rs= Tg [(m) 1012255 ‘)
X =2.8869 — (14.1811 — 3.3053l0gP)°* )
Hence,
AP[71
Re= g [((T—460)az) 10%]% (5)
= ay — (a5 — aglogP)?” ©)

Therefore, the objective function is defined as

26



British Journal of Multidisciplinary and Advanced Studies,6(6),18-34, 2025
Engineering (All Aspect)
Print ISSN: 2517-276X

Online ISSN: 2517-2778

https://bjmas.org/index.php/bjmas/index

minf(x) - Z | Rsactual - Rsestimatedl (7)
. API[%1 _ _ a
minf(x) =X | Rs ;a1 — Yg X [(—(T_%O)az) 10% ~ (@5 — aslogP)®7 jag (8)

aq, Ay, A3, Ay, As, Ag, A7, are the optimization parameters to be determined by the ACO algorithm

Rs ctuq 18 the solution  gas-oil ratio derived from laboratory text.
Rs oo timateq 1S the solution gas-oil ratio estimated by the model.

For the Standing (1947) correlation:

Re=y, x [y + 1.4) 1042 9)

x =0.0125API —0.00091(T — 460) (10)

Hence,

Re=v, [+ az) 10%]% (12)

X = a,API —0.00091(T — 460) (12)

Therefore, the objective function is defined as
minf(x) =), | R

minf(xX) =), | R

Sactual Rsestimaptedl (13)
— yg X [(a_l’ + az) 10a4API —0.00091(T — 4—60)]0(3 I (14)

Sactual

aq, @, a3, are the optimization parameters to be determined by the ACO algorithm
R is the solution gas-oil ratio derived from  laboratory  text.

R is the solution gas-oil ratio estimated by the model.

Sactual

Sestimated

Table 1 Differential liberation test data

Oil density y 0 37
AP @EO°F 0.743
Yq (from separator air = 1) 60°F
Temperature °T
Pressure (psig) Experimental
2405 737
2200 684
1950 620
1700 555
1450 492
1200 429
950 365
700 301
450 235
200 155
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The optimization algorithm was implemented using python programming language.
RESULT AND DISCUSSION

Results

The results obtained from the Ant colony optimization algorithm implementation are illustrated
below in subsections for the two different correlations’ objective function. The Ant colony
movement, Best_error or solution, solution gas-oil ratio plot and the error analysis of the various
correlations are illustrated (figure 4 and 5).

Result for Glaso (1980) Correlation

API%1
Re=vy [(Gaene) 10%]%s (15)
X=a, — (a5 — aglogP)* (16)

The following correlation-optimized variables were obtained following algorithm implementation:
a, = 3.4667710568852397

a, =2.6198511338157635

a3 = 0.5880939983327723

a, = 2.2716374250684543

as =.2295153095411815

@ = 0.390570590489649

a,; = 1.6922261142374737

Companson of Gas Solubility Models
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—aee  Ant Colony
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Figure 4. Solution Gas-Oil Ratio Solution with Glaso (1980)
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Result for Standing (1947) Correlation

Re=y, » [+ ap) 10¥] 7
1

X = a,APl —0.00091(T — 460) .(18)

The following correlation-optimized variables were obtained following algorithm implementation:
a, = 2.2762756333330287

a, = 0.6895135372541572

a3 = 0.04182318135431567

a, = 0.7291513149819021

Comparison of Gas Solubility Models
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Figure 5: Solution Gas-Oil Ratio Solution with Standing (1947)

Statistical Metrics Evaluation

We utilized several key statistical metrics to evaluate the performance of the ACO algorithm in
estimating GOR values. These metrics include Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Correlation Coefficient, Average Percent Relative
Error, and Sum of Squared Residuals. The results are as follows:

» Mean Absolute Error (MAE): 1.267
The MAE indicates that the GOR estimates deviate from the actual values by
approximately 1.27 units on average. This relatively low error suggests that the ACO
algorithm is effective in providing close estimates to actual GOR values.
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» Mean Squared Error (MSE): 2.170
The MSE highlights the presence of some larger deviations in the estimation process. The
higher MSE compared to MAE underscores the importance of addressing these larger
errors to refine the algorithm.

» Root Mean Squared Error (RMSE): 1.473
The RMSE indicates that the ACO algorithm's estimates typically fall within 1.47 units
of the actual GOR. This aligns with the MAE, further confirming the algorithm's
reliability for estimating GOR values in most cases.

» Correlation Coefficient: 0.998
The extremely high correlation coefficient suggests an almost perfect linear relationship
between the estimated and actual GOR values. This implies that the ACO algorithm is
capturing the underlying patterns in the data effectively.

» Average Percent Relative Error (%): 4.30
With a very low average percent relative error of approximately 0.39%, the ACO
algorithm demonstrates a high level of accuracy in its estimates compared to the actual
values.

» Sum of Squared Residuals: 21.695
The sum of squared residuals provides an overall measure of the cumulative error.
Although this value is useful, it should be interpreted in relation to the total variability of
the dataset to determine the model's effectiveness.

Cross Plot of Estimated vs Actual Gas Solubllity
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Figure 6. Visualization (Plot of Estimated Gas Solubility versus Actual Gas Solubility)

Strong Relationship: The scatter plot's straight line suggests a clear connection between our
estimated and actual gas solubility values. This means our method of estimating gas solubility
using factors like GOR and pressure works effectively (figure 6).
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Model Confirmation: The plot confirms that our method for estimating gas solubility is reliable.
Most points fall close to the ideal line, showing that our predictions are consistent and accurate
under specific reservoir conditions.

Comparative Analysis of Gas Solubility Models and Ant Colony Optimization Algorithm
for GOR Estimation
This section aims to present a thorough comparison between the outcomes obtained from the Ant
Colony Optimization (ACO) method and the gas solubility values predicted by the different
models such as Glasco, Standing, and Petrosky and Farshad. The assessment takes experimental
data into account for validation and concentrates on the gas solubility (SCF/STB) at various
pressure levels. By contrasting these models, we hope to evaluate the ACO algorithm's precision
and dependability as a prediction tool for estimating gas solubility, particularly for uses in oil and
gas reservoir engineering.

Comparison of Gas Solubility Models with Experimental Data

The gas solubility values (SCF/STB) from various models (Glasco, Standing, Petrosky and
Farshad) was compared against experimental data obtained from differential liberation tests. The
table 2 below presents the gas solubility at various pressure levels (in Psig) derived from each
model.

Table 2. Comparison Between Different Existing Correlation and ACO Algorithm

Pressure (psig) Experimental Glaso Standing Ant Colony Optimization

2405 737 665 /03 708.0571753
2200 684 500 735 665.3058239
1950 620 425 658 611.8100762
1700 555 388 575 556.5658767
1450 492 319 493 499,2094992
1200 429 285 309 439.2216859
950 365 205 242 375.8116207
700 301 165 185 307.6555236
450 235 100 100 2321705220
200 155 55 45 142.5189201

Statistical Comparison of Models
The comparison of models also includes a statistical analysis to evaluate the performance of each
model in terms of accuracy and precision. The following metrics were calculated in table 3:
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Table 3: Comparison metric of different existing models

Metric ACO algorithm Glaso Standing
Mean Absolute Error (MAE) 3.339 - -

Mean Squared Error (MSE) 19.898 - -

Root Mean Squared Error (RMSE 4.461 - -
Correlation Coefficient 0.998 0.9167 0.8097
Average Percent Relative Error (%) 4.30 30.22 40.11
Sum of Squared Residual 364985 566488 522387

Key Insights from the Comparison
Accuracy Metrics: The Mean Absolute Error (MAE) for our model (3.339) is significantly
lower than the values reported in previous studies, showing a higher degree of accuracy.

Error Variance: The Root Mean Squared Error (RMSE) value for our model (4.461) is
indicative of its reliability, minimizing estimation errors.

Correlation Strength: Our model achieves an exceptionally high Correlation Coefficient of
0.998, vastly surpassing the Glasco (0.9167) and Standing (0.8097) models, demonstrating a strong
predictive ability.

Relative Error: The Average Percent Relative Error for our model (4.30%) is much lower than
that of the other models, which range from 29.3% to 40.11%. This highlights our model’s precision
in estimating gas solubility.

Residual Analysis: The Sum of Squared Residuals for our model is the lowest, reinforcing its
effectiveness in fitting the data compared to other models.

Based on the statistical analysis and data insights, the ACO algorithm for estimating GOR
demonstrates a high level of accuracy and reliability. The key findings include:

High Accuracy: The near-perfect correlation coefficient and low percent relative error
demonstrate the algorithm's effectiveness in estimating GOR values.

Optimization Areas: Larger deviations in residuals and absolute errors at extreme pressures
suggest that further optimization is required, particularly in handling outlier conditions.

Practical Application: The algorithm’s performance supports its application in real-world
petroleum engineering scenarios, such as reservoir management and gas production estimation,
with a focus on medium to low bubble point pressures for optimal performance.

Report on the Evaluation of Gas-Oil Ratio (GOR) Estimation using Ant Colony
Optimization (Aco) Algorithm

How well the Ant Colony Optimization (ACO) method performs when estimating the Gas-Oil
Ratio (GOR) for petroleum engineering applications, namely in forecasting gas output and
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reservoir management was assessed. A variety of statistical measures and visual evaluations were
used to evaluate the ACO algorithm with experimental techniques. The main objective is to
evaluate the GOR estimates produced by the ACO algorithm under various circumstances,
including bubble point pressure (BPP), in terms of their correctness, dependability, and
practicality.

The results above indicates that the ant colony optimization algorithm is a good algorithm for the
optimization of solution gas-oil correlations, as it does not depend on the functions to be
differentiable like some other optimization method. During the implementation process, it was
observed that the larger the particle population, the higher the tendency of the swarm to find the
minimum value (best solution) of the objective functions. Furthermore, no correlation out of the
two (Glaso, 1980; Standing, 1947) correlations was able to predict the solution gas-oil ratio of the
Volve field correctly.

This could be view from their respective low coefficient of fitness, high average relative
percentage error and sum of squared error. Therefore, the claim by Standing (1947) that his
correlation can be generalized for any field didn’t hold in this case. However, with the
implementation of the ACO algorithm, the efficiency of the prediction of the various correlations
increased as the ACO found the best combination of the constant parameters that will give the best
prediction as the volve field is concerned. The optimized Glaso correlation was found to have the
best prediction performance with the highest coefficient of fitness of 0.9993, the highest sum of
squared error of 566488 and the least average relative percentage error of 30.22. Therefore, for
any pressure and temperature, the optimized Standing Correlation can be used to predict the
solution gas-oil ratio of the Volve field without any fear of enormous error.

CONCLUSION

The most significant element of the PVT analysis is the solution gas-oil ratio. when a result, it is
crucial to continuously assess its value when reservoir pressure declines. Furthermore, as
previously mentioned, the capital-intensive nature of routine reservoir fluid sampling and
laboratory testing led to the development of mathematical correlations by many authors for the
prediction of PVT properties. However, because these correlations were created for fluids from a
particular area with certain bubble point pressures, oil densities, gas specific gravities, etc.,
globalizing correlations can result in infinite inaccuracies (errors) that may be ambiguous.

Additionally, this work was restricted to the Glaso (1980) and Standing (1947) correlations to
show the important of optimizing a correlation before it’s applied to a specific reservoir fluid type
and the benefit of the particle swarm optimization algorithm. None of the three correlations in this
study gave an accurate prediction of the solution gas-oil ratio before its optimization. If these
correlations were used for prediction in this field, there would error in the predicted property and
would mislead engineers when it comes to decision making concerning the field’s maintenance
and production strategy. Therefore, it can be concluded that the ant colony optimization increased
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the performance accuracy of all three correlations. Their coefficient of fitness was increased from
0.6534 to 0.9167, and from 0.7092 to 0.8097 for the Glaso (1980), and Standing (1947)
correlations respectively. Hence, the optimized Glaso correlation gives the best prediction
performance for the Volve field reservoir fluid properties (Solution gas-oil Ratio (Rs).

Recommendation
Based on the results and conclusions of this research, the following recommendation was put
out:

» Availability of reservoir fluid properties all over the globe should be made available for
students and researchers in other to be able to develop a robust, generalized reservoir
fluid properties correlation.

» Optimizing a PVT (solution gas-oil ratio) correlation with previously reported attributes
IS a necessary step before using it to predict reservoir properties.

» ACO is recommended to be used in the optimization of PVT correlations, because of its
non-gradient dependence and simplicity.
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