Portland Cement, Structural Steel \& AT Math: From Observation to Theory

Paul T E Cusack, BScE, DULE

St-michael@hotmail.com
DOI: https://doi.org/10.37745/bjmas.2022.0027
Published: 27th October, 2022

Citation: Cusack P.T. E. (2022) Portland Cement, Structural Steel \& AT Math: From Observation to Theory, British Journal of Multidisciplinary and Advanced Studies: Engineering, Science and Technology, 3(1),44-57

Abstract

In this paper, we calculate the variables for regular concrete that have been observed but not put on a mathematical basis. Concrete is widely used and is a n important building material. Understanding concrete better is important considering that a lot of infrastructure repair work in the US will be done in the short term- work that has been neglected for far too many years. Concrete repair is a large part of that work.

KEYWORDS: Portland cement; concrete; AT Math.

INTRODUCTION

Civil Engineers study concrete in detail. But to my knowledge, the theory undergirding the measured variables for concrete such as 28-day strength, or the water to cement ration has never been done before. Using the new Physics, uncovered again from ancient times, by this author, we calculate the parameters that are essential to understand concrete fully. We begin with the chemical equations for cement.

Tricalcium silicate + Water--->Calcium silicate hydrate+Calcium hydroxide + heat $2 \mathrm{Ca}_{3} \mathrm{SiO}_{5}+7 \mathrm{H}_{2} \mathrm{O}--->3 \mathrm{CaO} \cdot 2 \mathrm{SiO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ca}(\mathrm{OH})_{2}+173.6 \mathrm{~kJ}$
Dicalcium silicate + Water--->Calcium silicate hydrate + Calcium hydroxide +heat
$2 \mathrm{Ca}_{2} \mathrm{SiO}_{4}+5 \mathrm{H}_{2} \mathrm{O}-->3 \mathrm{CaO} \cdot 2 \mathrm{SiO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}(\mathrm{OH})_{2}+58.6 \mathrm{~kJ}$
Source: [1]

METHOD

A desktop investigation of known variables such as 28 day strength, water to cement ratio, the air entrainment in Mortar, heat of hydration, and the manufacture of cement in a clinker was undertaken. Then AT Math was applied to the physics and chemistry of Portland cement. Astrotheology has formulas and known parameters that were used to compare against those observed for concrete.

British Journal of Multidisciplinary and Advanced Studies:

Molecular Mass
$2 \mathrm{Ca}_{3}=20 \times 2 \times 3=120$
$2 \mathrm{Si}=14 \times 2=28$
$2 \mathrm{O} 5=16 \times 10=160$
$14 \mathrm{H}=1 \times 14=14$
$7 \mathrm{O}=16 \times 7=112$
$\Sigma=434 \times 6.023=2614$
$\mathrm{M}=\mathrm{Ln} \mathrm{t}$
2613.9=Ln t
$\mathrm{t}=13.65$
$\mathrm{E}=1 / \mathrm{t}=0.732+173.6=2.472$
$\mathrm{e}^{2.472}=118.461=1 / 0.844158$

Poisson's Ratio
$0.844\left(\mathrm{M}_{\mathrm{L}} / \mathrm{M}_{\mathrm{A}}\right)=0.26$
$M_{L} / M_{A}=0.308$
$0.308 / 4=1 / 12.98 \sim 1 / 13=1 / \mathrm{E}$
$\mathrm{E}=13$
$\mathrm{E}^{2}+\mathrm{E}-2=\mathrm{t}$
$13^{2}+13-2=t=180=\pi$
$0.26(8 / 3)=0.693=\operatorname{Ln} 2$
$\mathrm{t}=2$
$\mathrm{t}^{2}-\mathrm{t}-1=\mathrm{E}=1$
$\mathrm{t}=-1 ; 2$
$0.69333(8 / 3)=1.443$
$e^{1.443}=1.15523=1 / \sin 60^{\circ}=E$
$\mathrm{s}=\mathrm{E} \times \mathrm{t}=|\mathrm{E}||\mathrm{t}| \sin \theta$
$\mathrm{s}=\mathrm{t}$
$\mathrm{E}=1 / \sin \theta$

Figure1 Plot of \ln function and exponential function
Strength of Concrete
M=Ln t
$\mathrm{E}=1 / \mathrm{t}=1 / \mathrm{F}$
$\mathrm{F}=\mathrm{t}$
$\mathrm{M}=\mathrm{Ln} \mathrm{F}$
$=\mathrm{Ln} 20.0 \mathrm{MPa}$
$t^{2}-t-1=2 t-1$
$\mathrm{t}=3$; $\mathrm{E}=5$
Concrete Test specimen
Test Cylinder dia150mm x height 300 mm

```
SA=2\pi(0.150) }\mp@subsup{}{}{2}\times0.300+(\pi)(0.15\mp@subsup{0}{}{2}
=0.2828+0.7068
=0.9898\approx1
0.9898+0.7068=16.96\approx17
```

Concrete is said to have 75% of its 28 day strength at 7 days. We can use the log strength formula to verify this.
$75 \%=3 / 4=1 / \mathrm{s}$ @ 7 days
$\mathrm{M}=1 / 81=0.012345679$
$(1 / 7 \times 7)+2=3=\mathrm{t}$
$\mathrm{M}=\operatorname{Lnt}$
$\mathrm{dM} / \mathrm{dt}=1 / \mathrm{t}=2$
$\mathrm{t}=1 / 2=\mathrm{t}_{\text {min }} \Rightarrow \mathrm{GMP}$
$\mathrm{dM} / \mathrm{dt}=1+2=3$
$\mathrm{t}=1 / 3=33.3 \%$
$33.3 \% \times 28$ days $=9.24$ days
$\operatorname{Ln} \mathrm{t}=\mathrm{Ln} 9.24=2.22$

British Journal of Multidisciplinary and Advanced Studies:
$22.2 / 20 \mathrm{MPa}=111=1 / 9=1 / \mathrm{c}^{2}=\mathrm{M}$
$4(1 / \sqrt{ } 2)=0.2828=\mathrm{Mv}=\overline{\mathrm{P}}$
$\operatorname{Ln}(\pi-1)=76.154$
$76.15+22.2=0.9835=98.4 \%$ Strength $@ t=\pi$
$\Delta \mathrm{H}=173.6 \mathrm{~kJ} \approx \sqrt{ } 3$
$\mathrm{t}^{2}-\mathrm{t}-1=\mathrm{E}$
$(\sqrt{3})^{2}-\sqrt{ } 3-1=2.67=S f=1 / E=t$
$\mathrm{F}=\mathrm{t}=2.67$
$\Delta \mathrm{F}=\Delta \mathrm{t}$
Aside:
$\mathrm{t}=\mathrm{KE}=1 / 2 \mathrm{Mv}^{2}=1 / 2(4)(9)=18$
$\Delta \mathrm{t}=2.67 \mathrm{x}(1 / 18)$
$=148.333$
$148.333 \times 24 \mathrm{Hrs} / \mathrm{day}=0.356$
$\mathrm{e}^{-0.356}=7.004 \approx 7$ days
$\mathrm{M}=0.012345679=1 / 81$
$\mathrm{M}=(1 / 7)(7)+2=3=\mathrm{t}$
Now
$\Delta t=\pi-1=2.14159$
$2.14159 \times 1 / 18=118.977$

British Journal of Multidisciplinary and Advanced Studies:
$\Delta \mathrm{H}_{1}=173.6 \mathrm{C}$
$\Delta \mathrm{H}_{2}=58.6 \mathrm{C}$
$\Delta \mathrm{H}_{\mathrm{T}}=231.9$
$\operatorname{Ln} 23.18=3.1433 \approx \pi$
15 minutes $+2 \mathrm{Hrs}+12 \mathrm{Hrs}+20 \mathrm{Hrs}=34.25 \mathrm{hrs}$

M=Ln t
$=\operatorname{Ln} 34.25=1 / 2.8299=1 / 28.3=1 /(4 \sqrt{ } 2)$
$\mathrm{PV}=\mathrm{nRT}$
$P V /[n R]=T$
$20 \times V / 8.31=23.18$
$V=96.3129$
Cylinder Area Exposed $=\pi \mathrm{R}^{2}=\pi(0.150)^{2} \mathrm{x} 0.300$
$=2.120$
$2.120 / 96.3129=2.20=1 / 454=\operatorname{Ln} 9.24$ days

Figure 2 The typical Clinker and the making of cement.
water/cement ratio
$\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mol} \times 6.023=108.414 \mathrm{~g}$
$108.414 / 81.6=1.3286 \sim 4 / 3=\mathrm{s}$
$1 / \mathrm{s}=75.26 \%$
$\mathrm{w} / \mathrm{c}=0.42$

British Journal of Multidisciplinary and Advanced Studies:

Mortar \& Porosity tpo combat rejointing.
$\mathrm{pH}=\log \left[\mathrm{H}^{+}\right]=12$
$\mathrm{M}=\mathrm{Ln} \mathrm{t}$
$\left[\mathrm{H}^{+}\right]=\mathrm{t}$
$\mathrm{t}=162.7$
$1.6275 / 1.0074=1.6155 \approx 1.618$
$\mathrm{OH}^{-}=17 \mathrm{~g} / \mathrm{mol} \times 6.023=102.4295$
$\mathrm{Ca}^{2+}=20 \mathrm{~g} / \mathrm{mol} \times 6.023=120.46$
$\Sigma=222.8895=\operatorname{Ln} 9.24$ days $=\mathrm{M}$

Stage V=36 Hours $=1.5$ days
$36 \mathrm{Hrx} \mathrm{1/18=2=t}$
$t^{2}-t-1=E=1$
$\mathrm{t}=-1 ; 2$

Heat of Hydration
$15 \mathrm{~min}(0.25 \mathrm{Hrs})+2 \mathrm{Hrs}+12 \mathrm{Hrs}+20 \mathrm{Hrs}=34.25$
$1 / 34.25 \times 1 / 18=1622 \approx 1.618=\mathrm{t}$
$\mathrm{dE} / \mathrm{dt}=2 \mathrm{t}-1$
$2 \mathrm{t}=1622$
$\mathrm{E}=1 / \mathrm{t}=1 / 81=0.12345679=\mathrm{M}$
$(0.81)^{2}-(0.81)-1=1.1539=1 / 0.866=1 / \sin 60^{\circ}$
$s=t$
$s=|E||t| \sin 60$
$\mathrm{E}=1 / \sin 60^{\circ}$

Figure 3 The water to cement ratio plot against strength.
$108.414 / c=e^{-t}=e^{-3}$
$\mathrm{c}=2.177=1 / 0.459$

British Journal of Multidisciplinary and Advanced Studies:
$(0.361)^{2}-(0.361)-1=1.2308 \approx 1 / 81$

Now T=1550 C
$\mathrm{PV}=\mathrm{nRT}$
T=PV/R
$1550=20(\mathrm{~V}) / 8.31$
$\mathrm{V}=644.025$
Vol=Area \times Height $=\pi 0.150)^{2}(0.300)$
$=3.5197$
$3.5197 / 644.025=0.54651$
$(0.5465)^{2}-0.546516-1=\mathrm{E}=-.12478 \sim-1.25=\mathrm{E}_{\min }$
$\mathrm{c}=\mathrm{M}=\operatorname{Lnt} \mathrm{t}=35197$
$\mathrm{e}^{0.35197}=1.4218=1 / 0.7033$
$1.4218=1+\mathrm{w} / \mathrm{c} \approx \sqrt{ } 2$
$\mathrm{w} / \mathrm{c}=0.4218 \approx\left(\pi-\mathrm{e}^{1}\right)=$ Young's modulus
$c=E$
$\mathrm{M}=\mathrm{c}=\mathrm{Lnt} \mathrm{t}=1$
$\mathrm{t}=2.718$
$\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0}=\pi-\mathrm{e}=0.4233$

Water
$\mathrm{H}_{2}=2 \times 1=2$
$\mathrm{O}=1 \times 16=16$
$\Sigma 18$

5\% Air
$\mathrm{N}_{2}=14 \times 2=28$
$\mathrm{H}_{2}=1 \times 2=2$
$\mathrm{O}_{2}=16 \times 2=32$
$\Sigma=62$
Air /Water=
$62 / 18=3.44=1 / 0.2903$
$3.444 \times 0.4218=343.2$
$(0.3432)^{2}-0.3432-1=1 / 0.816 \approx 1 / 81$
$343.2 \times 2.5 \%$ Air $=0.858=1-142$

Heat of Hydrtation

Figure 4 The Plot of Heat of Hydration over time

Figure 5 The golden Mean Parabola.
Refer to Figure 4
$y=1 / \sqrt{ } 2 \pi \cdot e^{(x-\bar{x})^{2} / 2 \sigma^{2}}$
$\Delta \mathrm{H}=1 / \sqrt{ } 2 \pi \cdot \mathrm{e}^{(\{32+12\} / 2)^{2} / 2(17)}$
$=0.40058$
$=1 / 2.5$
=1/Air
Refer to Figure 5
$\mathrm{t}^{2}-\mathrm{t}-1=\mathrm{E}$
(0.4)2-0.4)-1=-1.24 -1.25

Refer to Figure 1
$\mathrm{M}=\mathrm{Ln} \mathrm{t}$
-1.24=Ln t
$\mathrm{t}=0.28938$
$\mathrm{E}=1 / 3.46$
Refer to Figure 3.
$\mathrm{y}=1 /(\mathrm{x}-1)$
$=1 / 0.28938$
$=1.40722$
$\approx 1.41=\sqrt{ } 2$

For Structural Steel:
$\mathrm{E}=1 / \mathrm{t}=1 / \mathrm{F}$
$\mathrm{F}=\mathrm{t}$
$\mathrm{PE}=\mathrm{Mc}^{2}$
$36 \mathrm{psi}=\mathrm{M}(3)^{2}$
$\mathrm{M}=4$
$\mathrm{H}_{2}=2 \times 1=2$
$\mathrm{O}_{2}=2 \times 16=32$
$\Sigma=34$
$34 x 6.023=2.047$
$\mathrm{e}^{2.04}=0.1300=\mathrm{E}$
$\mathrm{E}^{2}+\mathrm{E}-2=\mathrm{t}$
$13^{2}+13-2=18=\mathrm{t}$
Carbon Equivalent Value
$\mathrm{CEV}=\mathrm{C}+\mathrm{Mn} / 6+[\mathrm{Cr}+\mathrm{Mo}+\mathrm{V}] / 5+[\mathrm{Ni}+\mathrm{Cu}] / 15$
$\mathrm{C}=0.135$ for 36 psi Steel
CEV $=0.42=\mathrm{w} / \mathrm{c}$

Refer to Figure 3.
$36=1 /(n-1)$
$36(\mathrm{n}-1)=1$
36n-36=1
$36 n=1+36$
$36 n=37$
$\mathrm{n}=1.02777$
$=\mathrm{w} / \mathrm{c}$ ratio
$\mathrm{C}=12 \times 6.023 \times 2.777 \%=2.007$
$\mathrm{M}=\operatorname{Ln} \mathrm{t}=\operatorname{Ln} 20.07=2.999 \approx 3=\mathrm{t} \Rightarrow \mathrm{GMP} \mathrm{y}=\mathrm{y}$,
$\mathrm{M}=\mathrm{t}$
Conclusion
We see how AT Math can be used to put Concrete from Portland Cement on a theoretical footing. There are rounding errors in the calculations that could be improved upon by more careful analysis.

References

[1] Concrete: Scientific Principles (illinois.edu) Date Accessed: October 22,2022.
[2] The 28-Day Myth - National Precast Concrete Association Date Accessed: October 22,2022.
[3] Hydration of Cement | Heat of Hydration |Stages of Hydration of Cement (prodyogi.com) Date Accessed: October 22,2022.
[4] Steel Structure - an overview | ScienceDirect Topics

